图像的均值和方差python_计算图像数据集RGB各通道的均值和方差

第一种写法,先读进来,再计算。比较耗内存。

import cv2

import numpy as np

import torch

startt = 700

CNum = 100 # 挑选多少图片进行计算

imgs=[]

for i in range(startt, startt+CNum):

img_path = os.path.join(root_path, filename[i])

img = cv2.imread(img_path)

img = img[:, :, :, np.newaxis]

imgs.append(torch.Tensor(img))

torch_imgs = torch.cat(imgs, dim=3)

means, stdevs = [], []

for i in range(3):

pixels = torch_imgs[:, :, i, :] # 拉成一行

means.append(torch.mean(pixels))

stdevs.append(torch.std(pixels))

# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转

means.reverse() # BGR --> RGB

stdevs.reverse()

print("normMean = {}".format(means))

print("normStd = {}".format(stdevs))

第二种写法,读一张算一张,比较耗时:先过一遍计算出均值,再过一遍计算出方差。

import os

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

from scipy.misc import imread

startt = 4000

CNum = 1000 # 挑选多少图片进行计算

num = 1000 * 3200 * 1800 # 这里(3200,1800)是每幅图片的大小,所有图片尺寸都一样

imgs=[]

R_channel = 0

G_channel = 0

B_channel = 0

for i in range(startt, startt+CNum):

img = imread(os.path.join(root_path, filename[i]))

R_channel = R_channel + np.sum(img[:, :, 0])

G_channel = G_channel + np.sum(img[:, :, 1])

B_channel = B_channel + np.sum(img[:, :, 2])

R_mean = R_channel / num

G_mean = G_channel / num

B_mean = B_channel / num

R_channel = 0

G_channel = 0

B_channel = 0

for i in range(startt, startt+CNum):

img = imread(os.path.join(root_path, filename[i]))

R_channel = R_channel + np.sum(np.power(img[:, :, 0]-R_mean, 2) )

G_channel = G_channel + np.sum(np.power(img[:, :, 1]-G_mean, 2) )

B_channel = B_channel + np.sum(np.power(img[:, :, 2]-B_mean, 2) )

R_std = np.sqrt(R_channel/num)

G_std = np.sqrt(G_channel/num)

B_std = np.sqrt(B_channel/num)

# R:65.045966 G:70.3931815 B:78.0636285

print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))

print("R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std))

第三种写法,只需要遍历一次:在一轮循环中计算出x,x^2;  然后x'=sum(x)/N ,又有sum(x^2),根据下式:

S^2

= sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N

= {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N

= {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N

= {sum(x^2) - N*(x'^2) }/N

= sum(x^2)/N - x'^2

S = sqrt( sum(x^2)/N - (sum(x)/N )^2   )

可以知道,只需要经过一次遍历,就可以计算出数据集的均值和方差。

import os

from PIL import Image

import matplotlib.pyplot as plt

import numpy as np

from scipy.misc import imread

startt = 5000

CNum = 1000 # 挑选多少图片进行计算

R_channel = 0

G_channel = 0

B_channel = 0

R_channel_square = 0

G_channel_square = 0

B_channel_square = 0

pixels_num = 0

imgs = []

for i in range(startt, startt+CNum):

img = imread(os.path.join(root_path, filename[i]))

h, w, _ = img.shape

pixels_num += h*w # 统计单个通道的像素数量

R_temp = img[:, :, 0]

R_channel += np.sum(R_temp)

R_channel_square += np.sum(np.power(R_temp, 2.0))

G_temp = img[:, :, 1]

G_channel += np.sum(G_temp)

G_channel_square += np.sum(np.power(G_temp, 2.0))

B_temp = img[:, :, 2]

B_channel = B_channel + np.sum(B_temp)

B_channel_square += np.sum(np.power(B_temp, 2.0))

R_mean = R_channel / pixels_num

G_mean = G_channel / pixels_num

B_mean = B_channel / pixels_num

"""

S^2

= sum((x-x')^2 )/N = sum(x^2+x'^2-2xx')/N

= {sum(x^2) + sum(x'^2) - 2x'*sum(x) }/N

= {sum(x^2) + N*(x'^2) - 2x'*(N*x') }/N

= {sum(x^2) - N*(x'^2) }/N

= sum(x^2)/N - x'^2

"""

R_std = np.sqrt(R_channel_square/pixels_num - R_mean*R_mean)

G_std = np.sqrt(G_channel_square/pixels_num - G_mean*G_mean)

B_std = np.sqrt(B_channel_square/pixels_num - B_mean*B_mean)

print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))

print("R_std is %f, G_std is %f, B_std is %f" % (R_std, G_std, B_std))

你可能感兴趣的:(图像的均值和方差python)