点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
点击进入—> CV 微信技术交流群
作者:林浩通 | 已授权转载(源:知乎)编辑:CVer
https://zhuanlan.zhihu.com/p/586595657
我们介绍一篇SIGGRAPH Asia 2022的论文:Efficient Neural Radiance Fields for Interactive Free-viewpoint Video,该论文由浙江大学CAD&CG国家重点实验室提出。
论文链接:arxiv.org/abs/2112.01517
论文代码:github.com/zju3dv/ENeRF
论文主页:https://zju3dv.github.io/enerf/
输入是多个相机在固定机位拍摄的某个动态场景的多目视频,论文希望能生成该动态场景的自由视点视频。该问题有许多应用,例如虚拟呈现,电影游戏制作等。
为了支持自由视点视频的应用,自由视点视频的渲染效果需要足够逼真,生成制作需要足够快,生成后在用户端的渲染也需要足够快。
最近一些方法基于隐式神经表示,利用体渲染技术优化场景表示,从而制作自由视点视频。D-NeRF[Pumarola et al., CVPR 2021] 利用隐式神经表示恢复了动态场景的motions,实现了照片级别的真实渲染。但是,这一类方法很难恢复复杂场景的motions,他们训练一个模型需要从几小时到几天不等的时间。此外,渲染一张图片通常需要分钟级的时间。
D-NeRF [Pumrola et al., CVPR 2021]基于图像的渲染技术克服了以上方法的一些问题。第一,对于动态场景,IBRNet[Wang et al., CVPR 2021]能够把每一帧图像都当作单独的场景处理,从而不需要恢复场景的motions。第二,基于图像的渲染技术可以通过预训练模型避免每一时刻的重新训练。但是,IBRNet渲染一张图片仍然需要分钟级的时间。
IBRNet[Wang et al., CVPR 2021]为了解决基于图像的渲染技术渲染过慢的问题,论文提出结合显式表示和隐式表示两者的优点。具体而言,我们观察到通过MVS方法预测显式表示,例如深度图像,通常是很快的。利用此显式表示去引导隐式表示的体渲染过程中的采样,能够大幅降低此前方法在空间内密集采样点(包括空地方的点和被遮挡的点)造成的计算开销,从而实现加速。
通过MVS方法快速计算新视角的深度,利用深度仅在物体表面进行采样计算辐射场我们首先使用MVS方法预测新视角的深度图像。给定标定好的相机姿态,我们利用待渲染的视角空间上临近的图像建立级联代价体,使用3D卷积网络处理代价体获得深度图像以及置信区间。
建立级联代价体预测深度图像以及置信区间给定上一步预测的深度置信区间,我们在此区间内采样若干点,通过图像特征和3D卷积网络得到的3D特征体,泛化的预测这些采样点的辐射场和密度。
在深度区间内采样少量点,利用图像特征预测这些点的辐射场,使用体渲染技术得到渲染图像在得到渲染结果后,我们使用图像的均方差损失函数端到端的优化网络参数。我们实验发现仅使用RGB图像优化网络参数即可获得高质量的渲染结果。
使用RGB图像优化ENeRF我们提供了消融实验分析去研究论文方法的每一步带来的影响。
第一行展示了基线方法(与MVSNeRF[Chen et al., ICCV 2021]相似),每条光线采样128个点,这样有着好的渲染结果,但是渲染速度比较慢。直接降低采样点的数量后,会导致渲染质量显著下降。使用论文提出的采样方法(Depth-gui.)后,能提升渲染质量,同时基本保持比较快的渲染速度。
为了进一步提高渲染速度,论文使用了级联的设计(Cascade Cost Volume),通过我们仔细的设计,我们将速度从9.7FPS提升到20.31FPS。
此外我们研究了额外使用地面真值深度图像来监督网络学习,我们发现它对最后的渲染质量不会有很大的影响,这说明了论文方法使用RGB图像端到端优化的鲁棒性。
ENeRF的消融实验我们在DTU,NeRF Synthetic以及Real Forward-facing静态场景数据集以及ZJUMoCap和DynamicCap动态场景数据集上进行了和之前方法的比较,我们在渲染速度上实现了较大的提升,并且在渲染质量上取得了有竞争力的结果。
ENeRF与SOTA方法在静态场景上的可视化结果的对比 ENeRF与SOTA方法在静态场景上的量化结果对比 ENeRF与SOTA方法在动态场景上的可视化结果对比ENeRF与SOTA方法在动态场景上的量化结果对比
点击进入—> CV 微信技术交流群
CVPR/ECCV 2022论文和代码下载
后台回复:CVPR2022,即可下载CVPR 2022论文和代码开源的论文合集
后台回复:ECCV2022,即可下载CVPR 2022论文和代码开源的论文合集
后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF
NeRF 交流群成立
扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-NeRF 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如NeRF+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer222,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!
▲扫码进群
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看