一文讲透计算机网络的数据链路层

一文讲透计算机网络的数据链路层

一、数据链路层功能概述

一、数据链路层的研究思想

一文讲透计算机网络的数据链路层_第1张图片

二、数据链路层网络基本概念

  • 节点:主机、路由器
  • 链路:网络中两个节点之间的物理通道,链路的传输介质主要由双绞线、光纤、和微波。分为有线链路和无线链路。
  • 数据链路:网络中两个节点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成数据链路。
  • :链路层的协议数据单元,封装网络层数据报。

链路数据层负责通过一条链路从一个节点向另一个物理链路直接相连的相邻节点传送数据报。
一文讲透计算机网络的数据链路层_第2张图片

三、数据链路层功能概述

数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能,将物理层提供的可能出错的物理连接改造成为逻辑上无差错的数据链路,使之对网络层表现出一条无差错的链路。

一文讲透计算机网络的数据链路层_第3张图片

  • 功能一:为网络层提供服务。无确认无连接服务,有确认无连接服务,有确认面向连接服务。有链接一定确定!
  • 功能二:链路管理层,即连接的建立、维持、释放(用于面向连接的服务)
  • 功能三:组帧
  • 功能四:流量控制。(限制发送方)
  • 功能五:差错控制(帧错/位错)。

二、封装成帧和透明传输

一、封装成帧

封装成帧:就是在一段数据的前后部分添加首部和尾部,这样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。

首部和尾部包含许多的控制信息,他们的一个重要作用:帧定界(确定帧的界限)。

帧同步:接收方应当能从接收到的二进制比特流中区分帧的其实和终止。

组帧的四种方法:1、字符计数法 2、字符(节)填充法 3、零比特填充法 4、违规编码法。
一文讲透计算机网络的数据链路层_第4张图片

二、透明传输

透明传输:是指不管所传数据是什么样的比特组合,都应当能够在链路上传送。因此,链路层就“看不见”有什么妨碍数据传输的东西。

当所传数据中的比特组合恰巧与某一个控制信息完全一样时,就必须采取适当的措施,使收方不会将这样的数据误认为是某种控制信息。这样才能保证数据链路层的传输是透明的。

一文讲透计算机网络的数据链路层_第5张图片

三、字符计数法

帧首部使用一个计数字段(第一个字节,八位)来标明帧内字符数。

一文讲透计算机网络的数据链路层_第6张图片

痛点:鸡蛋装在一个篮子里了。

四、字符填充法

一文讲透计算机网络的数据链路层_第7张图片

  • 当传送的帧是由文本文件组成时(文本文件的字符都是从键盘上输入的,都是ASCII码)。不管从键盘上输入什么字符都可以放在帧里传过去,即透明传送。
  • 当传送的帧是由非ASCII码的文本组成时(二进制代码的程序或图像等)。就要采用填充方法实现透明传输。

一文讲透计算机网络的数据链路层_第8张图片

五、零比特填充法

一文讲透计算机网络的数据链路层_第9张图片

  • 操作:

    • 在发送端,扫描整个信息字段,只要连续5个1,就立即填入一个0。

    • 在接收端收到一个帧时,先找到标志字段确定边界,再用硬件对比特流进行扫描。发现连续5个小时,就把后面的0删除了。
      一文讲透计算机网络的数据链路层_第10张图片

    保证了透明传输:在传送的比特流中可以传送任意比特组合,而不会引起对帧边界的判断错误。

四、违规编码法

曼彻斯特编码:

一文讲透计算机网络的数据链路层_第11张图片

可以用 “高-高”, “低-低” 来定界帧的起始和终止。

由于字节计数法中Count字段的脆弱性(其值若有差错将导致灾难性后果)及字符填充实现上的复杂性和不兼容性,目前较普遍使用的帧同步法是比特填充违规码法

三、差错控制(检错编码)

一、差错从何而来

概来说,传输中的差错都是由于噪声引起的。

全局性 :

  1. 由于线路本身电气特性所产生的随机噪声(热噪声),是信道固有的,随机存在的。解决办法:提高信噪比来减少或避免干扰。(对传感器下手)
  2. 外界特定的短暂原因所造成的冲击噪声,是产生差错的主要原因。解决办法:通常利用编码技术来解决。

一文讲透计算机网络的数据链路层_第12张图片

链路层为网络层提供服务:无确认无连接服务(通信质量好),有确认无连接服务(通信质量差的无线传输链路),有确认面向连接服务(有线传输链路)。

二、数据链路层的差错控制

在这里插入图片描述
一文讲透计算机网络的数据链路层_第13张图片

编码VS编码:数据链路层编码和物理层的数据编码与调至不同。物理层编码针对的是单个比特,解决传输过程中比特的同步等问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

冗余编码:在数据发送之前,先按某种关系附加上一定的冗余位,构成一个符合某一规则的码字后在发送。当要发送的有效数据变化时,相应的冗余位也随之变化,使码字遵从不变的规则。接收端根据收到码字是否仍符合原规则,从而判断是否出错。

三、检错编码–奇偶校验

一文讲透计算机网络的数据链路层_第14张图片

四、检错编码–**CRC**循环冗余码

在这里插入图片描述

在数据链路层仅仅使用循环冗余检验CRC差错编码检测技术,只能做到对帧的无差错接收,即“凡是接收数据链路层接收接受的帧,我们都能以非常接近于1的概率认为这些帧在传输过程中没有产生差错”。接收端丢弃的帧虽然曾收到了,但是最终还是因为差错被丢弃。“凡是接收端数据链路层接收的帧无差错”。

“可靠传输”:数据链路层发送端发送什么,接收端就收到什么。

链路层使用CRC检验,能够实现无比特差错的传输,但这还不是可靠传输。

四、差错控制(纠错编码)

一、纠错编码–海明码

  • 海明码:发现双比特错,纠正单比特错
    • 工作原理:动一发而牵全身

二、确定校验码位数

海明不等式:
2 r > = k + r + 1 2^r >= k+r+1 2r>=k+r+1

r 为冗余信息位,k为信息位

要发送的数据:D = 101101

数据的位数k=6,满足不等式的最小r为4,也就是D=101101的海明码应该有6+4=10位,其中原数据6位,校验码4位。

三、脑图时刻

一文讲透计算机网络的数据链路层_第15张图片

五、流量控制与可靠传输机制

一、数据链路层的流量控制

较高的发送速度较低的接收能力的不匹配,会造成传输错误,因此流量控制也是数据链路层的一项重要工作。数据链路层的流量控制是点对点的,而传输层的流量控制是端到端的。

数据链路层流量控制手段:接收方收不下就不回复确认。

传输层流量控制手段:接收端给发送端一个窗口公告。

二、控制流量的方法

停止等待协议:每次发送完一个帧就停止发送,等待对方的确认,在收到确认后再发送下一个帧。
一文讲透计算机网络的数据链路层_第16张图片

  • 滑动窗口协议
    • 后退N帧协议(GBN)
    • 选择重传协议(SR

一文讲透计算机网络的数据链路层_第17张图片

  • 停止等待协议:发送窗口大小=1,接收窗口大小=1;
  • 后退N帧协议(GBN):发送窗口大小>1,接收窗口大小=1;
  • 选择重传协议(SR)::发送窗口大小>1,接收窗口大小>1;

三、可靠 传输、滑动窗口、流量控制

  • 可靠传输:发送端发啥,接收端收啥。
  • 流量控制:控制发送速率,使接收方有足够的缓冲空间来接收每一个帧。
  • 滑动窗口解决:
    • 流量控制:收不下就不给确认,想发也发不了
    • 可靠传输:发送方自动重传

四、脑图时刻

一文讲透计算机网络的数据链路层_第18张图片

六、停止等待协议

一、停止等待协议

  • 为什么要有停止等待协议?

    除了比特出差错,底层信道还会出现丢包问题。为了实现流量控制。

丢包:物理线路故障、设备故障、病毒攻击、路由信息错误等原因,会导致数据包的丢失。

  • 研究停等协议的前提?

    虽然现在常用全双工通信方式,但为了讨论问题方便,仅考虑一方发送数据(发送方),一方接收数据(接收方)。

    因为是在讨论可靠传输的原理,所以并不考虑数据是在哪一个层次上传送的。

    “停止等待协议”就是每次发送完一个分组就停止发送,等待对方确认,在收到确认后再发送一下个分组。

  • 停等协议有几种应用情况?

    无差错情况&有差错情况

二、停等协议–无差错情况

一文讲透计算机网络的数据链路层_第19张图片

三、停等协议–有差错情况

  • 数据帧丢失或检测到帧的出错

一文讲透计算机网络的数据链路层_第20张图片

  • ACK丢失

一文讲透计算机网络的数据链路层_第21张图片

  • ACK迟到

一文讲透计算机网络的数据链路层_第22张图片

四、停等协议性能分析

一文讲透计算机网络的数据链路层_第23张图片

五、信道利用率

发送发在一个发送周期内,有效地发送数据所需要的时间占整个发送周期的比率。
一文讲透计算机网络的数据链路层_第24张图片

信 道 吞 吐 率 = 信 道 利 用 率 ∗ 发 送 方 的 发 送 速 率 信道吞吐率=信道利用率*发送方的发送速率 =
一文讲透计算机网络的数据链路层_第25张图片

六、脑图时刻

一文讲透计算机网络的数据链路层_第26张图片

七、选择重传协议(SR

一、GBN协议的弊端

​ 确认积累,批量重传

​ 可不可以只传出错的帧?

​ 解决办法:设置单个确认,同时加大接收窗口,设置接收缓存,缓存乱序到达的帧。

二、选择重传协议中的滑动窗口

一文讲透计算机网络的数据链路层_第27张图片
一文讲透计算机网络的数据链路层_第28张图片

三、SR发送方必须响应的三件事

  • 上层的调用:从上层收到数据后,SR发送方检查下一个可用于该帧的序号,如果序号位于发送窗口内,则发送数据帧;否则就像GBN一样,要么将数据缓存,要么返回给上层之后再传输。

  • 收到了一个ACK:如果收到ACK,加入该帧序号在窗口内,则SR发送方将那个确认的帧标记为已接收。如果该帧序号是窗口的下界(最左边第一个窗口对应的序号),则窗口向前移动到具有最小序号的未确认帧处。如果窗口移动了并且有序号在窗口内的发送帧,则发送这些帧。
    一文讲透计算机网络的数据链路层_第29张图片

  • 超时事件:每个帧都有自己的定时器,一个超时事件发送后只重传一个帧。

四、SR接收方要做的事

  • 来着不拒(窗口内的帧)
  • SR接收方将确认一个正确接收的帧而不管其是否按序。失序的帧将被缓存,并返回给发送方一个该帧的确认帧【收谁确认谁】,直到所有帧(即序号更小的帧)皆被收到为止,这时才可以将一批帧按序交付给上层,然后向前移动滑动窗口。

一文讲透计算机网络的数据链路层_第30张图片

如果收到了窗口序号外(小于窗口下界)的帧,就返回一个ACK。其他情况就忽略该帧。

五、运行总的SR

一文讲透计算机网络的数据链路层_第31张图片

六、滑动窗口长度

  • 窗口可以无限长吗?
    • 发送窗口最好等于接收窗口。(大了会溢出,小了没意义)

W T m a x = W R m a x = 2 的 ( n − 1 ) 次 方 WTmax=WRmax=2 的 (n-1)次方 WTmax=WRmax=2(n1)

一文讲透计算机网络的数据链路层_第32张图片

一文讲透计算机网络的数据链路层_第33张图片

七、SR协议重点总结

  1. 对数据帧逐一确认,收一个确认一个。
  2. 只重传出错帧。
  3. 接收方有缓存。

八、脑图时刻

一文讲透计算机网络的数据链路层_第34张图片

八、后退N帧协议(GBN

一、停等协议的弊端

一文讲透计算机网络的数据链路层_第35张图片

二、后退N帧协议中的滑动窗口

  • 发送窗口:发送方维持一组连续的允许发送的帧的序号。

一文讲透计算机网络的数据链路层_第36张图片

三、发送方必须响应的三件事

  • 上层的调用:上层发送数据时,发送方先检查发送窗口是否已满,如果未满,则产生一个帧并将其发送;如果窗口已满,发送方只需将数据返回给上层,暗示上层窗口已满。上层等一会在发送。(实际实现中,发送方可以缓存这些数据,窗口不满足时在发送帧)。
  • 收到了一个ACKGBN协议中,对n号帧的确认采用积累确认的方式,标明接收方已经收到n号帧和它之前的全部帧。
  • 超时事件:协议的名字为后退N帧/回退N帧,来源于出现丢失和时延过长帧时发送方的行为。就像在停等协议中一样,定时器将再次用于恢复数据帧或确认帧的丢失。如果出现超时,发送方重新传所有已发送但未被确认帧。

四、GBN接收方要做的事

  • 如果正确收到n号帧,并且排序,那个接收方为n帧发送一个ACK,并将该帧中的数据部分交付给上层。
  • 其余情况都丢弃帧,并为最近按序接收的帧重新发送ACK。接收方无需缓存任何失序帧,只需要维护一个信息:expectedswqnum(下一个按序接收的帧序号)。

一文讲透计算机网络的数据链路层_第37张图片

五、滑动窗口长度

  • 滑动窗口长度可以无限吗?
  • 若采用n各比特对帧编号,那个发送窗口的尺寸Wt应满足:

1 < = W t < = 2 n − 1 1<= Wt <= 2^n-1 1<=Wt<=2n1

因为发送窗口尺寸过大,就会使得接收方无法区别新帧和旧帧。

六、GBN协议重点总结

  1. 积累确认(偶尔稍带确认)
  2. 接收方只按顺序接收帧,不按序无情丢弃。
  3. 确认序列号最大的、按序到达的帧。
  4. 发送窗口最大为 2^n-1, 接收窗口大小为1。

七、GBN协议性能分析

  • 因连续发送数据帧而提高了信道利用率。
  • 在重传时必须把原来已经正确传送的数据帧重传,使传送效率降低。

八、脑图时刻

一文讲透计算机网络的数据链路层_第38张图片

九、信道划分介质访问控制

一、传输数据使用的两种链路

  • 点对点链路:两个相邻节点通过一个链路相连,没有第三者。应用:PPP协议,常用于广域网。
  • 广播式链路:所有主机共享通信介质。应用:早期的总线以太网、无线局域网,常用语局域网。典型拓扑结构:总线型、星型(逻辑总线型)
    一文讲透计算机网络的数据链路层_第39张图片
    一文讲透计算机网络的数据链路层_第40张图片

二、介质访问控制

  • 介质访问控制的内容就是,采取一定的措施,使得两对节点之间的通信不会发生互相干扰的情况。
  • 介质访问控制:
    • 静态划分信道:信道划分介质访问控制
      • 频分多路复用FDM
      • 时分多路复用TDM
      • 波分多路复用WDM
      • 码分多路复用CDM
    • 动态分配信道:
      • 轮询访问介质访问控制:令牌传递协议
      • 随机访问介质访问控制:
        • ALOHA协议
        • CSMA协议
        • CSMA/CD协议
        • CSMA/CA协议

三、信道划分介质访问控制

  • 信道划分介质访问控制:将使用介质的每个设备与来自同一信道上的其他设备的通信隔离开,把时域和频域资源合理的分配给网络上的设备。

一文讲透计算机网络的数据链路层_第41张图片

四、频分多路复用FDM

一文讲透计算机网络的数据链路层_第42张图片

  • 用户在分配到一定的频带后,在通信过程中至死至终都占用这个频带。频分复用的所有用户在同样的时间占用不用的宽带(频率带宽)资源。
  • 充分利用传输介质带宽,系统效率较高;由于技术比较成熟,实现也比较容易实现。

五、时分多路复用TDM

一文讲透计算机网络的数据链路层_第43张图片

将时间划分为一段长时间的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙,所有用户轮流占用信道。

频分复用–“并发”

时分复用–“并发”

六、改用的时分复用–统计时分复用STDM

一文讲透计算机网络的数据链路层_第44张图片

​ 每一个STDM帧中的时隙数小于连接在集中器上的用户数。各用户有了数据就随时发往集中器的输入缓存,然后集中器按顺序依次扫描输入缓存,把缓存中的输入数据放入STDM帧中,一个STDM帧满了就发出。STDM帧不是固定分配时隙,而是按需动态分配时隙。

七、波分多路复用WDM

波分多路复用就是光的频分多路复用,在一根光纤中传输多种不同波长(频率)的光信号,由于波长(频率)不同,所以各路光信号互不干扰,最后再用波长分解复用器将各路波长分解出来。

一文讲透计算机网络的数据链路层_第45张图片

八、码分多路复用CDM

  • 码分多址(CDMA)是码分复用的一种方式。
  • 一个比特分为多个码片/芯片(chip), 每一个站点被指定一个唯一的m位的芯片序列。发送1时站点发送芯片序列,发送0时发送芯片序列反码(通常把0写成-1)。
  • 如何不打架:多个站点同时发送数据的时候,要求各个站点芯片序列相互正交。
  • 如何合并:各路数据在信道中被线性相加。
  • 如何分离:合并的数据和源站规格化内积。

九、CD还是CS?

在这里插入图片描述

十、ALOHA协议

一、介质访问控制

一文讲透计算机网络的数据链路层_第46张图片

二、纯ALOHA协议

  • 纯ALOHA协议思想:不监听信道,不按时间发送,随机重发。想法就发。
    一文讲透计算机网络的数据链路层_第47张图片

  • 冲突如何检测?

    • 如果发送冲突,接收方在就会检测出差错,然后不予确认,发送方在一定时间内收不到就判断发生冲突。
  • 冲突后如何解决?

    • 超时后等一随机时间在重传。

三、时隙ALOHA协议

  • 时隙ALOHA协议的思想:把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道,若发生冲突,则必须等到下一个时间片开始时刻再发送。(控制想发就发的随意性)

一文讲透计算机网络的数据链路层_第48张图片

四、ALOHA要知道的事

  1. 纯ALOHA比时隙ALOHA吞吐量更低,效率更低。
  2. 纯ALOHA想发就发,时隙ALOHA只有在时间片段开始时才能发。

十一、CMSA协议

一、CSMA协议

  • 载波监听多路范问协议CSMA(carrier sense multiple access)

  • CS:载波侦听/监听,每一个站在发送数据之前要检测一下总线上是否有其他计算机在发送数据。

  • 当几个站同时在总线上发送数据时,总线上的信号电压摆动值将会增大(互相叠加)。当一个站检测到的电压摆动超过一定门限值时,就认为总线上至少两个站同时在发送数据,表明产生了碰撞,及发生了冲突。

  • MA:多点接入,表示许多计算机以多点接入的方式连接在一根总线上。

  • 协议思想:发送帧之前,监听信道。

一文讲透计算机网络的数据链路层_第49张图片

二、1-坚持CSMA

​ 坚持指的是对于监听信道忙之后的坚持。

​ 1-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。空闲则传输,不必等待。忙则一直监听,直到空闲马上传输。如果有冲突(一段时间内未收到肯定回复),则等待一个随机长的时间再监听,重复上述过程。

  • 优点:只要媒体空闲,站点就马上发送,避免了媒体利用率的损失。
  • 缺点:加入有两个或两个以上的站点有数据要发送,冲突就不可避免。

三、非坚持CSMA

​ 非坚持指的是对于监听信道忙之后就不继续监听。

​ 非坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。空闲则传输,不必等待。忙则等待一个随机的时间之后再进行监听。

  • 优点:采用随机的重发延迟时间可以减少冲突发生的可能性。
  • 缺点:可能存在大家都在延迟等待过程中,使得媒体仍可能处于空闲状态,媒体使用率降低。

四、p-坚持CSMA协议

​ p-坚持指的是对于监听信道空闲的处理。

​ p-坚持CSMA思想:如果一个主机要发送消息,那么它先监信道。空闲则以p概率直接传输,不必等待;概率1-p等待到下一个时间槽再传输。忙则等待一个随机的时间之后再进行监听。

  • 优点:既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的这种方案。
  • 缺点:发生冲突后还是要坚持把数据帧发送完,造成了浪费。
    一文讲透计算机网络的数据链路层_第50张图片

十二、轮询访问介质访问控制

一、介质访问控制

  • 信号划分介质访问控制( MAC Multiple Access Control ) 协议:
    • 基于多路复用技术划分资源。
    • 网络负载重:共享信道效率高,且公平。
    • 网络负载轻:共享信道效率低
  • 随机访问MAC协议:冲突
    • 用户根据意愿随机发送信息,发送信息时可独占信道带宽。
    • 网络负载重:产生冲突开销
    • 网络负载轻:共享信道效率高,单个结点可利用信道全部带宽
  • 轮询访问MAC协议/轮流协议/轮转访问MAC协议:
    • 既要不产生冲突,又要发送时占全部宽带
    • 轮询协议、令牌传递协议。

二、轮询协议

  • 主节点轮流“邀请”从属结点发送数据。

一文讲透计算机网络的数据链路层_第51张图片

  • 问题:
    • 轮询开销
    • 等待延迟
    • 单点故障

三、令牌传递协议

在这里插入图片描述

  • 令牌:一个特殊格式的MAC控制帧,不含任何信息。

    • 控制信道的使用,确保同一时刻只有一个结点独占信道。

      令牌环网无碰撞

  • 每个结点都可以在一定时间内(令牌持有时间)获得发送数据的权利,并不是无限制地持有令牌。

  • 问题:

    • 令牌开销
    • 等待延迟
    • 单点故障

    应用于令牌环网(物理星型拓扑,逻辑环形拓扑)。

    采用令牌传送方式的网络常用于负载较重、通信量较大的网络中。

四、MAC协议总结

一文讲透计算机网络的数据链路层_第52张图片

十三、局域网基本概念和体系结构

一、局域网

  • 局域网(Local Area Network):简称LAN,是指在某一区域内由多台计算机互联成的计算机组,使用广播信道。
    • 特点1:覆盖的地理范围较小,只在一个相对独立的局域范围内联,如果一座或集中的建筑群内。
    • 特点2:使用专门铺设的传输介质(双绞线、同轴电缆)进行联网,数据传输速率高(10Mb/s ~ 10Gb/s)
    • 特点3:通信延迟时间短,误码率低,可靠性较高。
    • 特点4:各站为平等关系,共享传输信道。
    • 特点5:多采用分布式控制和广播式通信,能进行广播和组播。

决定局域网的主要要素为:网络拓扑,传输介质于介质访问控制方法

二、局域网个拓扑结构

  • 星型拓扑:中心节点是控制中心,任意两个节点间的通信最多只需要两步,传输速度快,并且网络构形简单、建网容易、便于控制和管理。但这种网络系统,网络可靠性低,网络共享能力差,有单点故障问题。
  • 总线型拓扑:网络可靠性高、网络节点间响应速度快、共享资源能力强、设备量投入少、成本低、安装使用方便,当某个工作站节点出现故障时,对整个网络系统影响较小。
  • 环形拓扑:系统中通信设备和线路比较节省。有单点故障问题;由于环路是封闭的,所以不便于扩充,系统响应延时长,且信息传输效率相对较低。
  • 树形拓扑:易于隔离故障,也容易有单点故障。

一文讲透计算机网络的数据链路层_第53张图片
一文讲透计算机网络的数据链路层_第54张图片
一文讲透计算机网络的数据链路层_第55张图片
一文讲透计算机网络的数据链路层_第56张图片

三、局域网传输介质

  • 局域网:
    • 有线局域网 常用介质:双绞线、同轴电缆、光纤
    • 无线局域网 常用介质:电磁波

四、局域网介质访问控制方法

  • CSMA/CD:常用于总线型局域网,也用于树型网络。
  • 令牌总线:常用于总线型局域网,也用于树型网络。
    • 它是 把总线型或树型网络中的各个工作站按一定顺序如按接口地址大小排列成一个逻辑环。只有令牌持有者才能控制总线,才有发送信息的权利。
  • 令牌环:用于环形局域网,如令牌环网。

五、局域网分类

  • 以太网:以太网是应用最广泛的局域网,包括标准以太网(10Mbps)、快速以太网(100Mbps)、千兆以太网(1000Mbps)和10G以太网,它们都符合IEEE802.3系列标准规范。逻辑拓扑总线型,物理拓扑是星型或拓扑型。使用CSMA/CD

  • 令牌环网:物理上采用了星型拓扑结构,逻辑上是环形拓扑结构。已是“明日黄花”。

  • FDDIFiber Distributed Data Interface):物理上采用了双环拓扑结构,逻辑上是环形拓扑结构。

  • ATM网(Asynchronaous Transfer Mode):较新型的单元交换技术,使用53字节固定长度的单元进行交换。

  • 无线局域网(Wireless Local Area Network;WLAN):采用IEEE802.11标准。

六、IEEE 802标准

​ IEEE 802系列标准是IEEE 802LAN/MAN标准委员会定制的局域网、城域网技术标准(1980年2月成立)。其中最广泛使用的有以太网、令牌环、无线局域网等。这一系列标准中的每一个子标准都由委员会中的一个专门工作组负责。

IEEE 802现有标准
一文讲透计算机网络的数据链路层_第57张图片

七、MAC子层和LLC子层

  • IEEE 802 标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制层MAC子层。

一文讲透计算机网络的数据链路层_第58张图片

八、脑图时刻

一文讲透计算机网络的数据链路层_第59张图片

十四、以太网

一、以太网概述

​ 以太网(Ethernet)指的是由Xerox公司创建并由XeroxIntelDEC公司联合开发的基带总线局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网使用CSMA/CD(载波监听多路访问及冲突检测)技术。

​ 以太网在局域网各种技术中占统治性地位:

  • 造价低廉(以太网卡不到100块);

  • 是应用最广泛的局域网技术。

  • 比令牌环网、ATM网便宜,简单。

  • 满则网络速率要求:10Mb/s~10Gb/s

    以太网两个标准:

    DIX Ethrtnet V2: 第一个局域网产品(以太网)规约。

    IEEE 802.3: IEEE 802委员会802.3工作组制定的第一个IEEE的以太网标准。(帧格式有一丢丢改动)。

二、 以太网提供无连接、不可靠的服务

  • 无连接:发送方和接收方之间无“握手过程”。
  • 不可靠:不对发送方的数据帧编号,接收方不向发送方进行确认,差错帧直接丢弃,差错纠正由高层负责。

以太网只实现无差错接收,不实现可靠传输。

三、以太网传输介质与拓扑结构的发展

一文讲透计算机网络的数据链路层_第60张图片

四、适配器的MAC地址

  • 计算机与外界局域网的连接是通过通信适配器的。

一文讲透计算机网络的数据链路层_第61张图片

在局域网中,硬件地址又称为物理地址,或MAC地址。【实际上是标识符】

  • MAC 地址:每个适配器有一个全球唯一的48位二进制地址,前24位代表厂家(由IEEE规定),后24位厂家自己指定。常用6个十六进制数表示,如 02-60-8c-e4-b1-21

五、以太网MAC帧

  • 常用的MAC帧是以太网V2的格式。

一文讲透计算机网络的数据链路层_第62张图片

六、高速以太网

  • 速率>=100Mb/s的以太网称为高速以太网。
  • 100BASE-T以太网
    • 在双绞线上传送100Mb/s基带信号的星型拓扑以太网,仍然使用IEEE802.3CSMA/CD协议。支持全双工和半双工,可在全双工方式下工作而无冲突。
  • 吉比特以太网
    • 在光纤或双绞线上传送1Gb/s信号。
    • 支持全双工和半双工,可在全双工方式下工作而无冲突。
  • 10吉比特
    • 10吉比特以太网在光纤上传送10Gb/s信号。

七、脑图时刻

一文讲透计算机网络的数据链路层_第63张图片

十五、无线局域网

一、IEEE 802.11

  • IEEE 802.11 是无线局域网通用的标准,它是由IEEE所定义的无线局域网络通信的标准。

一文讲透计算机网络的数据链路层_第64张图片

二、802.11的MAC帧头格式

一文讲透计算机网络的数据链路层_第65张图片
一文讲透计算机网络的数据链路层_第66张图片

三、无线局域网分类

  • 有固定基础设施无线局域网。
  • 无固定基础设施无线局域网的自组织网。

四、有固定基础设施无线局域网

一文讲透计算机网络的数据链路层_第67张图片

五、无固定基础设施无线局域网的自组织网络

一文讲透计算机网络的数据链路层_第68张图片

十六、CSMA/CD协议

一、介质访问控制

一文讲透计算机网络的数据链路层_第69张图片

二、CSMA/CD协议

  • 载波监听多点接入/碰撞检测CSMA/CD(carrier sense multiple access with collision detection)

  • CS:载波帧听/监听,每一个站在发送数据之前以及发送数据时都要检测一下总线上是否有其他计算机在发送数据。

  • MA:多点接入,表示计算机以多点接入的方式连接在一根总线上。总线型网络

  • CD:碰撞检测(冲突检测),“边发送边监听”,适配器边发送数据变检测信道上信号电压的变化情况,以便判断自己在发送数据时其他站是否也在发送数据。半双工网络

一文讲透计算机网络的数据链路层_第70张图片

三、传播时延对载波监听的影响

一文讲透计算机网络的数据链路层_第71张图片
一文讲透计算机网络的数据链路层_第72张图片

四、如何确定碰撞后的重传时机?

  • 截断二进制指数规避算法?

一文讲透计算机网络的数据链路层_第73张图片

若连续多次发生冲突,就标明可能有较多的站参与争用信道。使用此算法可使重传需要推迟的平均时间随重传次数的增大而增大,因而减小发生碰撞的概率,有利于整个系统的稳定。

五、最小帧长问题

一文讲透计算机网络的数据链路层_第74张图片

以太网规定最短帧长为64B,凡是长度小于64B的都是由于冲突而异常终止的无效帧。

六、脑图时刻

一文讲透计算机网络的数据链路层_第75张图片

十七、PPP协议和HDLC协议

一、广域网

  • 广域网(WAN, Wide Area Network),通常跨接很大的物理范围,所覆盖的范围 从几十公里到几千公里,它能连接多个国家和城市,或横跨几个州并能提供远距离通信,形成国际的远程网络。
  • 广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网计算机系统互联起来,达到资源共享的目的。如因特网(Internet)是世界范围内最大的局域网。

一文讲透计算机网络的数据链路层_第76张图片

二、PPP协议的特点

  • 点对点协议(Point-Point Protocol) 是目前使用最广泛的数据链路层协议,用户使用拨号电话接入因特网时一般都使用PPP协议。只支持全双工链路。

三、PPP协议应满足的要求

  • 简单:对于链路层的帧,无需纠错,无需序号,无需流量控制。
  • 封装成帧:帧定界符。
  • 透明传输:与帧定界符一样比特组合的数据应该如何处理:异步线路用字节填充,同步线路用比特填充。
  • 多种网络层协议:串行/并行,同步/异步/,电/光…
  • 差错检测:错就丢弃
  • 检测连接状态:链路是否正常工作。
  • 最大传送单元:数据部分最大长度MTU
  • 网络层地址协商:知道通信双方的网络层地址。
  • 数据压缩协商

四、PPP协议无需满足的要求

  • 纠错
  • 流量控制
  • 序号
  • 不支持多点线路

五、PPP协议的三个组成部分

  • 一个将IP数据报封装到串行链路(同步串行/异步串行)的方法。
  • 链路控制协议LCP:建立并维护数据链路连接。身份验证。
  • 网络控制协议NCPPPP可支持多种网络层协议,每个不同的网络层协议都要一个相应的NCP来配置,为网路层协议建立和配置逻辑连接。

六、PPP协议的状态图

一文讲透计算机网络的数据链路层_第77张图片

七、PPP协议的帧格式

一文讲透计算机网络的数据链路层_第78张图片

八、HDLC协议

  • 高级数据链路控制(High-Level Data Link Control 或简称HDCL),是一个在同步网上传输数据、面向比特的数据链路层协议,它由国际标准化组织(ISO)根据IBM公司的SDLCSynchronousData Link Contro)l协议扩展开发而成的,采用全双工通信。
  • 所有帧采用CRC检验,对信息帧进行顺序编号,可防止漏收或重份,传输可靠性高。

九、HDLC的站

  • 主站:主要功能是发送命令(包括数据信息)帧、接收相应帧,并负责对整个链路的控制系统的初启、流程的控制、差错检测或恢复等。
  • 从站的主要功能是接收由主站发来的命令帧,向主站发送响应帧,并且配合主站参与差错恢复等链路控制。
  • 复合站的主要功能是既能发送,又能接收命令帧和响应帧,并且负责整个链路的控制。
  • 三种数据操作的方式:
    • 正常响应方式。
    • 异步响应方式。
    • 异步平衡方式。

十、HDLC的帧格式

一文讲透计算机网络的数据链路层_第79张图片

  • 信息帧(i) 第1位为0,用来传输数据信息,或使用捎带技术对数据进行确认。
  • 监督帧(S) 10,用于流量控制和差错控制,执行对信息帧的确认、请求重发和请求暂停发送等功能。
  • 无编号帧(U) 11, 用于提供对链路的建立、拆除等多种控制功能。
  • “无奸细”

十一、PPP协议&HDLC协议

​ HDLC、PPP只支持全双工链路。

​ 都可以实现透明传输

​ 都可以实现差错检测,但不纠正差错。

一文讲透计算机网络的数据链路层_第80张图片
一文讲透计算机网络的数据链路层_第81张图片

十二、脑图时刻

一文讲透计算机网络的数据链路层_第82张图片

十八、链路层设备

一、物理层扩展以太网

在这里插入图片描述
在这里插入图片描述

二、链路层扩展以太网

  • 网桥根据MAC帧的目的地址对帧进行转发和过滤。当网桥收到一个帧时,并不向所有接口转发此帧,而是先检查此帧的目的MAC地址,然后再确定将该帧转发到哪一个接口,或者是把它丢弃(即过滤)。

一文讲透计算机网络的数据链路层_第83张图片

  • 网桥的特点:
    • 过滤通信量,增大吞吐量。
    • 扩大了物理范围。
    • 提高了可靠性。
    • 可互连不同物理层、不同MAC子层和不同速率的以太网。
  • 网段:一般指一个计算机网络中使用一层物理设备(传输介质,中继器,集线器等)能够直接通信的那一部分。

三、网桥分类–透明网桥

  • 透明网桥:“透明”指以太网上的站点并不知道所发送的帧将经过哪几个桥,是一种即插即用设备–自学习。

一文讲透计算机网络的数据链路层_第84张图片

四、网桥分类–源路由网桥

  • 源路由网桥:在发送帧时,把详细的最佳路由信息(路由最少/时间最短)放在帧的首部中。
  • 方法:源站以广播方式向欲通信的目的站发送一个发现帧。

五、多接口网桥–以太网交换机

一文讲透计算机网络的数据链路层_第85张图片
一文讲透计算机网络的数据链路层_第86张图片

六、以太网交换机的两种交换方式

  • 直通式交换机:查完目的地址(6B)就立刻转发。

    • 延迟小,可靠性低,无法支持具有不同速率的端口的交换。
  • 存储转发式交换机:将帧放入高速缓存,并检查是否正确,正确则转发,错误则丢弃。

    • 延迟大,可靠性高,可以支持具有不同速率的端口的交换。

七、冲突域和广播域

  • 冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。简单的说就是同一时间内只能有一台设备发送信息的范围。
  • 广播域:网络中能接收任一设备的集合。简单的说如果站点发出一个广播信号,所有能接收到这个信号的设备范围称为一个广播域。

一文讲透计算机网络的数据链路层_第87张图片
一文讲透计算机网络的数据链路层_第88张图片

八、脑图时刻

一文讲透计算机网络的数据链路层_第89张图片

十九、总结

一文讲透计算机网络的数据链路层_第90张图片

此文章为作者看王道考研的学习笔记,如有侵权,请联系作者24小时之内删除!

你可能感兴趣的:(计算机网络,网络,java)