目录
5.1 PyTorch模型定义的方式
5.1.1 必要的知识回顾
5.1.2 Sequential
5.1.3 ModuleList
5.1.4 ModuleDict
5.1.5 三种方法的比较与适用场景
5.2 利用模型块快速搭建复杂网络
5.2.1 U-Net简介
5.2.2 U-Net模型块分析
5.2.3 U-Net模型块实现
5.2.4 利用模型块组装U-Net
5.3 PyTorch修改模型
5.3.1 修改模型层
5.3.2 添加外部输入
5.3.3 添加额外输出
5.4 PyTorch模型保存与读取
5.4.1 模型存储格式
5.4.2 模型存储内容
5.4.3 单卡和多卡模型存储的区别
5.4.4 情况分类讨论
5.5 本节大纲
模型在深度学习中扮演重要的角色。
CNN的提出解决了图像,视频处理中的问题
RNN/LSTM解决了序列数据处理的问题
GNN在图模型发挥重要的作用
Module 类是 torch.nn 模块里提供的一个模型构造类 (nn.Module),是所有神经⽹网络模块的基类,我们可以继承它来定义我们想要的模型;
PyTorch模型定义应包括两个主要部分:各个部分的初始化(_init_);数据流向定义(forward)
基于nn.Module,我们可以通过Sequential,ModuleList和ModuleDict三种方式定义PyTorch模型。
Sequential类通过更加简单的方式定义模型,接受一个子模块的有序字典(OrderedDict)或一系列子模块作为参数逐一添加Module实例,模型的前向计算就是将这些实例按添加的顺序逐一计算。结合Sequential和定义方式:
class MySequential(nn.Module):
from collections import OrderedDict
def __init__(self, *args):
super(MySequential, self).__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
for key, module in args[0].items():
self.add_module(key, module) # add_module方法会将module添加进self._modules(一个OrderedDict)
else: # 传入的是一些Module
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def forward(self, input):
# self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成
for module in self._modules.values():
input = module(input)
return input
只需要将模型的层按序排列即可使用Sequential定义模型,分为以下两种方式。
直接排列:
import torch.nn as nn
net = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
print(net)
输出结果:
Sequential(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
使用OrderedDict:
import collections
import torch.nn as nn
net2 = nn.Sequential(collections.OrderedDict([
('fc1', nn.Linear(784, 256)),
('relu1', nn.ReLU()),
('fc2', nn.Linear(256, 10))
]))
print(net2)
输出结果:
Sequential(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(relu1): ReLU()
(fc2): Linear(in_features=256, out_features=10, bias=True)
)
Sequential优点:简单、易读、不需要写forward,顺序已经被定义好了
Sequential缺点:模型定义丧失灵活性。模型中间加入外部输入时,sequential变得不适用。
Modulelist接收一个子模块,或层,需属于nn.Module类的列表作为输入。
也可以类似List进行append和extend操作。
net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1]) # 类似List的索引访问
print(net)
输出:
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
nn.ModuleList并没有定义一个网络,只是将不同模块储存在一起。
ModuleList中元素先后顺序不代表网络中的真实位置顺序,需经过forward函数指定各个层先后顺序后才算完成模型的定义。
使用for循环实现:
class model(nn.Module):
def __init__(self, ...):
super().__init__()
self.modulelist = ...
...
def forward(self, x):
for layer in self.modulelist:
x = layer(x)
return x
ModuleDict和ModuleList作用类似,ModuleDict为神经网路的层添加名称。
net = nn.ModuleDict({
'linear': nn.Linear(784, 256),
'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
输出:
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
(act): ReLU()
(linear): Linear(in_features=784, out_features=256, bias=True)
(output): Linear(in_features=256, out_features=10, bias=True)
)
Sequential:快速验证结果,无需同时写_init_和forward
ModuleList和ModuleDict在某个完全相同的层需重复出现多次,可一行顶多行
ResNets中的残次计算,当前层结果需要和之前层中的结果进行融合,使用ModuleList/ModuleDict比较方便
以U-Net为例,如何构建模型块,利用模型块快速搭建复杂模型。
Segmentation模型的杰作,医学影像为代表的领域有诸多应用。
对称性,左右上下相邻模块连接,称为Skip-connection。
由以下几部分组成:
1)每个子块内部的两次卷积(Double Convolution)
2)左侧模型块之间的下采样连接,即最大池化(Max pooling)
3)右侧模型块之间的上采样连接(Up sampling)
4)输出层的处理
除模型块外,还有模型块之间的横向连接,输入和U-Net底部的连接等计算,这些单独的操作可以通过forward函数来实现。
先定义好模块,再定义模型块之间的连接顺序和计算方式
基础部件:DoubleConv, Down, Up, OutConv
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
以ResNet50为例
import torchvision.models as models
net = models.resnet50()
print(net)
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
..............
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
模型结构为了适配ImageNet预训练的权重,全连接层(fc)输出节点是1000。
如果用此模型做10分类问题,输出节点替换为10。再加一层全连接层,可以:
from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
('relu1', nn.ReLU()),
('dropout1',nn.Dropout(0.5)),
('fc2', nn.Linear(128, 10)),
('output', nn.Softmax(dim=1))
]))
net.fc = classifier
将模型(net)fc的层替换为classifier的结构。
该结构通过Sequential+OrderedDict模型定义方式。
如果在CNN网络中,除了输入图像,还需要同时输入图像对应其他信息。就需要在CNN中添加额外的输入变量。
基本思路:原模型添加输入位置前的部分作为一个整体,在forward中定义好原模型中不变的部分,添加的输入和后续层之间的连接关系。
Resnet50为基础,10分类任务。利用已有的模型结构,在倒数第二层增加一个额外的输入变量add_variable来辅助预测。
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
self.net = net
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc_add = nn.Linear(1001, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x = self.net(x)
x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1)
x = self.fc_add(x)
x = self.output(x)
return x
通过torch.cat实现tensor的拼接,torchvision中的resnet50输出是一个1000维的tensor,通过修改forward函数(配套定义一些层),先将2048维的tensor通过激活函数层和dropout层,再和外部输入变量"add_variable"拼接,最后通过全连接层映射到指定的输出维度10。
另外这里对外部输入变量"add_variable"进行unsqueeze操作是为了和net输出的tensor保持维度一致,常用于add_variable是单一数值 (scalar) 的情况,此时add_variable的维度是 (batch_size, ),需要在第二维补充维数1,从而可以和tensor进行torch.cat操作。
修改好的模型结构实例化:
import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
训练中,在输入数据的时候要给两个inputs
outputs = model(inputs, add_var)
需要输出模型某一中间层的结果,以施加额外的监督,获得更好的中间层结果。基本的思路是修改模型定义中forward函数的return变量。
以resnet50做10分类任务为例,在已经定义好的模型结构上,同时输出1000维的倒数第二层和10维的最后一层结果。
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
self.net = net
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(1000, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x1000 = self.net(x)
x10 = self.dropout(self.relu(x1000))
x10 = self.fc1(x10)
x10 = self.output(x10)
return x10, x1000
模型进行实例化:
import torchvision.models as models
net = models.resnet50()
model = Model(net).cuda()
输入数据后,两个outputs:
out10, out1000 = model(inputs, add_var)
pkl, pt, pth
一个pytorch模型包含:模型结构和权重。
权重的数据结构是一个字典(key是层名,value是权重向量)
存储分为:
存储整个模型,包括结构和权重
只存储模型权重
from torchvision import models
model = models.resnet152(pretrained=True)
# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict, save_dir)
PyTorch中将模型和数据放到GPU上有两种方式——.cuda()和.to(device),本节后续内容针对前一种方式进行讨论。如果要使用多卡训练的话,需要对模型使用torch.nn.DataParallel
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 如果是多卡改成类似0,1,2
model = model.cuda() # 单卡
model = torch.nn.DataParallel(model).cuda() # 多卡
model对应的layer名称打印出来,可观察到多卡并行的模型每层的名称前多了一个“module”。
单卡模型的层名:
多卡模型的层名:
训练和测试所使用的硬件条件不同,在模型的保存和加载过程中可能因为单GPU和多GPU环境的不同带来模型不匹配等问题。这里对PyTorch框架下单卡/多卡下模型的保存和加载问题进行排列组合(=4),样例模型是torchvision中预训练模型resnet152
单卡保存+单卡加载
使用os.envision命令指定使用的GPU后,即可进行模型保存和读取操作。
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
loaded_model = torch.load(save_dir)
loaded_model.cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model.cuda()
单卡保存+多卡加载
取单卡保存的模型后,使用nn.DataParallel函数进行分布式训练设置即可
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir)
loaded_model = nn.DataParallel(loaded_model).cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model = nn.DataParallel(loaded_model).cuda()
多卡保存+单卡加载
这种情况下的核心问题是:如何去掉权重字典键名中的"module",以保证模型的统一性。
对于加载整个模型,直接提取模型的module属性即可:
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取整个模型
torch.save(model, save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir)
loaded_model = loaded_model.module
加载模型权重,有以下几种思路:
去除字典里的module麻烦,往model里添加module简单(推荐)
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model = nn.DataParallel(loaded_model).cuda()
loaded_model.state_dict = loaded_dict
相当于分布到单卡上
遍历字典去除module
from collections import OrderedDict
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
loaded_dict = torch.load(save_dir)
new_state_dict = OrderedDict()
for k, v in loaded_dict.items():
name = k[7:] # module字段在最前面,从第7个字符开始就可以去掉module
new_state_dict[name] = v #新字典的key值对应的value一一对应
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = new_state_dict
loaded_model = loaded_model.cuda()
使用replace操作去除module
loaded_model = models.resnet152()
loaded_dict = torch.load(save_dir)
loaded_model.load_state_dict({k.replace('module.', ''): v for k, v in loaded_dict.items()})
多卡保存+多卡加载
由于是模型保存和加载都使用的是多卡,因此不存在模型层名前缀不同的问题。但多卡状态下存在一个device(使用的GPU)匹配的问题,即保存整个模型时会同时保存所使用的GPU id等信息,读取时若这些信息和当前使用的GPU信息不符则可能会报错或者程序不按预定状态运行。
读取整个模型再使用nn.DataParallel进行分布式训练设置
这种情况很可能会造成保存的整个模型中GPU id和读取环境下设置的GPU id不符,训练时数据所在device和模型所在device不一致而报错。
读取整个模型而不使用nn.DataParallel进行分布式训练设置
这种情况可能不会报错,测试中发现程序会自动使用设备的前n个GPU进行训练(n是保存的模型使用的GPU个数)。此时如果指定的GPU个数少于n,则会报错。在这种情况下,只有保存模型时环境的device id和读取模型时环境的device id一致,程序才会按照预期在指定的GPU上进行分布式训练。
相比之下,读取模型权重,之后再使用nn.DataParallel进行分布式训练设置则没有问题。因此多卡模式下建议使用权重的方式存储和读取模型:
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存+读取模型权重,强烈建议!!
torch.save(model.state_dict(), save_dir)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model = nn.DataParallel(loaded_model).cuda()
loaded_model.state_dict = loaded_dict
如果只有保存的整个模型,也可以采用提取权重的方式构建新的模型:
# 读取整个模型
loaded_whole_model = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_whole_model.state_dict
loaded_model = nn.DataParallel(loaded_model).cuda()
另外,上面所有对于loaded_model修改权重字典的形式都是通过赋值来实现的,在PyTorch中还可以通过"load_state_dict"函数来实现:
loaded_model.load_state_dict(loaded_dict)