- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《赛题名称》基于QuickRNet的TPU超分模型部署巴黎欧莱雅林松智能应用业务部算法工程师中信科移动中国-北京gpu@163.com团队简介巴黎欧莱雅团队包含一个队长和零个队员。队长林松,研究生学历,2019-2022在中国矿业大学(北京)攻读硕士学位,于2022年7月加入中信科移动公司,现在在智能应用业务部负责视觉AI算法的落地部署,是一名算法工程师,主要擅长
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》洋洋很棒李鹏飞算法工程师中国-烟台2155477673@qq.com团队简介本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。摘要本文是《基于TPU平台实现超分辨率重建模型部署》方案中算法方案的说明。本作品算法模型选用的是Real-ESRGAN。Real-ESRGAN是基
- 使用开源 Upscayl 工具放大图片
winfredzhang
人工智能Upscayl放大开源
Upscayl是一个基于人工智能的图像放大工具,可以用来将低分辨率的图片放大到高分辨率。Upscayl使用了一种称为超分辨率重建的技术,可以生成逼真的高分辨率图像。在本教程中,我们将介绍如何使用Upscaly工具放大图片。准备工作下载:https://github.com/upscayl/upscayl/releases/download/v2.9.5/upscayl-2.9.5-win.exe安
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏kahsolt@qq.com吕欢欢计算机科学与技术系博士南京大学中国-江苏huanhuanlv@smail.nju.edu.cn张凯铭物理学系本科四川大学中国-四川283574
- TPU编程竞赛|算丰助力2023 CCF大数据与计算智能大赛!
算能开发者社区
人工智能算法
目录赛题介绍赛题背景赛题任务赛程安排初赛阶段2023/09/25-11/27决赛阶段2023/11/28-12/17评分机制奖项设置赛题奖项赛事奖项近日,第十一届2023CCF大数据与计算智能大赛(简称CCFBDCI)正式启动报名,本次大赛含竞技赛题、数字安全公开赛等十余道竞技及训练赛题。算丰不仅为本次大赛提供了赛题「基于TPU平台实现视频超分辨率重建模型部署」,也为参赛选手提供丰富的云端TPU资
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛基于TPU平台实现超分辨率重建模型部署基于FSRCNN的TPU平台超分辨率模型部署方案WELL刘渝人工智能研一西安交通大学中国-西安1461003622@qq.com史政立网络空间安全研一西安交通大学中国-西安1170774291@qq.com崔琳、张长昊、郭金伟软件工程等研一北京大学软微学院中国-北京g1335129739@163.com团队简介刘渝:西安交通大
- 模型实战(18)之C++ - tensorRT部署GAN模型实现人脸超分辨重建
明月醉窗台
#深度学习实战例程c++生成对抗网络人工智能神经网络visualstudio
模型实战(18)之C++-tensorRT部署GAN模型实现人脸超分辨重建一个实现人脸超分辨率重建的demo支持StyleGAN:GPENorGFPGAN通过C++-tensorrt快速部署,推理速度每帧在RTX3090上5.5ms+,RTX3050上10ms+下边是实现效果(图片来源于网络search,如若侵权,联系删除)下边给出实现步骤:1.模型转换下载模型至本地Downloadthemode
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
Snu77
YOLOv8系列专栏YOLO人工智能深度学习python计算机视觉超分辨率重建目标检测
一、本文介绍本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10
- 超分辨率重建——SAN训练自己数据集及推理测试(详细图文教程)
佐咖
超分辨率重建Pytorch深度学习超分辨率重建图像处理pythonpytorch
目录一、源码包下载二、数据集准备三、预训练权重文件四、训练环境五、训练5.1超参数修改5.2训练模型5.2.1命令方式训练5.2.2Configuration配置参数方式训练5.3模型保存六、推理测试6.1超参数修改6.2测试6.2.1命令方式测试6.2.2Configuration配置参数方式测试6.3测试结果6.4推理速度七、总结一、源码包下载源码包有官网提供的和我自己修改过代码提供的,建议学
- 人工智能超分辨率重建:揭秘图像的高清奇迹
鳗小鱼
人工智能资源分享(resource)人工智能超分辨率重建图像处理rnncnn神经网络机器学习
导言人工智能超分辨率重建技术,作为图像处理领域的一项重要创新,旨在通过智能算法提升图像的分辨率,带来更为清晰和细致的视觉体验。本文将深入研究人工智能在超分辨率重建方面的原理、应用以及技术挑战。1.超分辨率重建的基本原理单图超分辨率:利用深度学习模型,通过学习低分辨率图像与高分辨率图像的映射关系,实现对单张图像的重建。多图融合:结合多个视角或时间点的图像信息,进一步提升图像的清晰度。2.应用领域及典
- 视频超分辨率重建
zi_y_uan
超分辨率重建人工智能
使用基于GAN的超分辨率模型对视频进行超清修复,项目GitHub链接如下:https://github.com/emptysoal/VideoRestore如何使用具体参考链接中的README。
- 超分辨率重建
金戈鐡馬
超分辨率重建人工智能计算机视觉深度学习图像处理
意义客观世界的场景含有丰富多彩的信息,但是由于受到硬件设备的成像条件和成像方式的限制,难以获得原始场景中的所有信息。而且,硬件设备分辨率的限制会不可避免地使图像丢失某些高频细节信息。在当今信息迅猛发展的时代,在卫星遥感、医学影像、多媒体视频等领域中对图像质量的要求越来越高,人们不断寻求更高质量和更高分辨率的图像,来满足日益增长的需求。空间分辨率的大小是衡量图像质量的一个重要指标,也是将图像应用到实
- 基于深度学习的超分辨率综述
teacher_ma_
计算机视觉深度学习人工智能神经网络cnn
1.单图像超分辨率重建SISR方法框架由两部分组成,非线性映射学习和上采样模块。非线性映射学习模块负责完成LR到HR的映射,这过程中利用损失函数引导和监督学习的进程;上采样模块实现重建图像的放大,两个模块协同完成SISR1.1超分框架(1)前端上采样超分框架前端上采样避免在低维进行映射学习,降低了学习难度,但噪声和模糊也被放大,并且高维卷积运算增加计算量,消耗更多资源(2)后端上采样超分框架该框架
- 基于深度学习的单帧图像超分辨率重建综述
小蒋的技术栈记录
深度学习深度学习超分辨率重建人工智能
论文标题:基于深度学习的单帧图像超分辨率重建综述作者:吴靖,叶晓晶,黄峰,陈丽琼,王志锋,刘文犀发表日期:2022年9月阅读日期:2023.11.18研究背景:图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,
- 「需求广场」需求词更新明细(十六)
CSDN文库小助手
大数据pythonjavajavascriptmatlab
进入需求广场,选取你擅长的领域开始上传资源、获取流量吧!2022.7.12上线需求词:No.需求词No.需求词No.需求词1超分辨率重建95idea快捷键189pid调参2视频编解码96linux切换到root用户190openmv与arduino串口通信3fpga开发97c++编译器191git教程4浏览器插件98springboot注解192matlab解多项式方程5tomcat安装及配置教程
- 【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程
RS迷途小书童
Python深度学习超分辨率重建计算机视觉人工智能深度学习图像处理
1前言图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度。目前应用较多的
- 【图像超分辨率重建】——EnhanceNet论文精读笔记
Zency_SUN
图像超分辨率重建论文精读超分辨率重建计算机视觉人工智能
2017-EnhanceNet:SingleImageSuper-ResolutionThroughAutomatedTextureSynthesis(EnhanceNet)基本信息作者:MehdiS.M.SajjadiBernhardSch¨olkopfMichaelHirsch期刊:ICCV引用:*摘要:单一图像超分辨率是指从单一低分辨率输入推断出高分辨率图像的任务。传统上,这项任务的算法性能
- 基于深度学习的图像超分辨率重建
wjhua_223
#超分辨率人工智能技术方向
最近开展图像超分辨率(ImageSuperResolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(SuperResolution,SR)传统的图像超分辨率重
- 基于多尺度分形残差注意力网络的超分辨率重建算法
Van-bo
1024程序员节
1.引言深度神经网络可以显著提高超分辨率的质量,但现有方法难以充分利用低分辨率尺度特征和通道信息,从而阻碍了卷积神经网络的表达能力。针对此类问题,本章提出了一种多尺度分形残差注意力网络(Multi-scaleFractalResidualAttentionNetwork,MFRAN)。具体而言,MFRAN由分形残差块(FractalResidualBlock,FRB)、双路增强通道注意力(Dual
- 超分辨率重建数据集制作:生成低分辨率数据集
Alocus_
python超分辨率重建超分辨率重建人工智能图像处理
目录背景代码结果其他注意:超分主流有两种BI、BD。1.实际上公认的是使用MATLAB进行插值。2.Bicubic(双三次插值)方式。(BI方式)3.高斯模糊+双三次插值是另一种常用方式(BD方式)。4.目前有使用Python实现的上述BI、BD,但或多或少还是有差异。这里python实现必定和matlab实现之间有差别,使用时注意。(希望你务必看一下这一篇文章:图像/视频超分之降质过程)(我写一
- AI影像修复及图像超分辨率
理想失速
计算机视觉人工智能
AI图像修复软件主要包含人脸修复、图像超分等功能。人脸修复功能主要对图像上的人脸进行识别和修复,从模糊、缺损、噪声图像中恢复高质量人脸图像。图像超分功能主要对图像进行超分辨率重建,将低分辨率图像处理为高分辨率图像。链接:https://pan.baidu.com/s/1epX3FKdTGNyTe0c8LoIPCQ?pwd=9knh1、人脸修复功能—>人脸修复,启动人脸修复界面。选择图像文件和输出路
- CVPR 2018
来自吐槽星
深度学习在图像超分辨率重建中的应用http://cvmart.net/community/article/detail/11使用CNN生成图像先验,实现更广泛场景的盲图像去模糊http://cvmart.net/community/article/detail/206用u-net训练一个模型:输入是一个静态的帧,输出的预测的五帧光流信息,模型在youtube数据集上训练。https://arxiv
- 【代码实践】HAT代码Window平台下运行实践记录
一的千分之一
【代码实践】python深度学习
HAT是CVPR2023上的自然图像超分辨率重建论文《activatingMorePixelsinImageSuper-ResolutionTransformer》所提出的模型。本文旨在记录在Window系统下运行该官方代码(https://github.com/XPixelGroup/HAT)的过程,中间会遇到一些问题,供大家参考。环境安装参考官方代码,进行环境安装pipinstall-rreq
- 深度学习在图像识别领域还有哪些应用?
matlabgoodboy
深度学习人工智能
深度学习在图像识别领域的应用非常广泛,除了之前提到的图像分类、目标检测、语义分割和图像生成,还有其他一些应用。图像超分辨率重建:深度学习技术可以用于提高图像的分辨率,例如通过使用生成对抗网络(GAN)和变分自编码器(VAE)等技术,可以将低分辨率的图像转换为高分辨率的图像,从而提高了图像的清晰度和质量。图像风格迁移:深度学习可以用于将一张图像的风格应用到另一张图像上,例如使用GAN模型可以将一张照
- 【论文阅读】ICCV2021|超分辨重建论文整理和阅读
一的千分之一
【论文阅读】transformer深度学习计算机视觉
本文主要对ICCV2021中超分辨率重建相关论文进行整理与阅读。1.LearningASingleNetworkforScale-ArbitrarySuper-ResolutionPaper:https://arxiv.org/pdf/2004.03791.pdfCode:https://github.com/The-Learning本论文聚焦于非整数尺度和非对称的SR问题,如上采样1.5x2.5
- AI数字人:语音驱动面部模型及超分辨率重建Wav2Lip-HD
智慧医疗探索者
AI数字人技术人工智能超分辨率重建图像处理深度学习
1Wav2Lip-HD项目介绍数字人打造中语音驱动人脸和超分辨率重建两种必备的模型,它们被用于实现数字人的语音和图像方面的功能。通过Wav2Lip-HD项目可以快速使用这两种模型,完成高清数字人形象的打造。项目代码地址:github地址1.1语音驱动面部模型wav2lip语音驱动人脸技术主要是通过语音信号处理和机器学习等技术,实现数字人的语音识别和语音合成,从而实现数字人的语音交互功能。同时,结合
- 【图像超分辨率重建】——SwinIR论文阅读笔记
沉潜于
超分辨率重建笔记人工智能
SwinIR:ImageRestorationUsingSwinTransformer基本信息:期刊:ICCV2021摘要:图像恢复是一个长期存在的低级视觉问题,其目的是从低质量图像(例如,缩小、噪声和压缩图像)。虽然最先进的图像恢复方法是基于卷积神经网络,但很少有人尝试使用Transformers,这些Transformers在高级视觉任务中表现出令人印象深刻的性能。在本文中,我们提出了一个强基
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后