设 M \mathcal{M} M表示一个n维的流型,因为流型局部同胚与 R n \mathbb{R}^n Rn,所以我们可以通过定义符号 ⊞ \boxplus ⊞和 ⊟ \boxminus ⊟建立一个流型 M \mathcal{M} M的局部邻域和其正切空间的双射。
⊞ : M × R n → M ; ⊟ : M × M n → R n \boxplus:\mathcal{M}\times \mathbb{R}^n\to \mathcal{M};\quad\boxminus:\mathcal{M}\times \mathbb{M}^n\to \mathbb{R}^n ⊞:M×Rn→M;⊟:M×Mn→Rn
对于流型 S O ( 3 ) SO(3) SO(3), ⊞ : S O ( 3 ) × R n → S O ( 3 ) \boxplus:SO(3)\times \mathbb{R}^n\to SO(3) ⊞:SO(3)×Rn→SO(3)生成一个 S O ( 3 ) SO(3) SO(3)中的元素,其结果是参考元素 R ∈ S O ( 3 ) \bold{R}\in SO(3) R∈SO(3)和一个(通常很小的)旋转的组合。这个旋转由流型在参考元素 R \bold{R} R处的正切空间中的一个向量 θ ∈ R 3 \theta\in\mathbb{R}^3 θ∈R3指定。
M = S O ( 3 ) : R ⊞ θ = R E x p ( θ ) \mathcal{M}=SO(3):\bold{R}\boxplus\bm{\theta}=\bold{R}{\rm Exp}(\bm{\theta}) M=SO(3):R⊞θ=RExp(θ)
minus符号 ⊟ : S O ( 3 ) × S O ( 3 ) → R 3 \boxminus:SO(3)\times SO(3)\to \mathbb{R}^3 ⊟:SO(3)×SO(3)→R3是plus符号的逆运算,它返回两个 S O ( 3 ) SO(3) SO(3)元素的角度差异向量 θ ∈ R 3 \bm{\theta}\in\mathbb{R}^3 θ∈R3,角度差异向量在参考元素 R \bold{R} R的正切空间中表示。
注意到这个符号可以定义于任意SO(3)的表示:
q ⊞ θ = q ⊗ E x p ( θ ) θ = q S ⊟ q R = L o g ( q R ∗ ⊗ q S ) \bold{q}\boxplus \bm{\theta}=\bold{q}\otimes{\rm Exp}(\bm{\theta})\\ \bm{\theta}=\bold{q}_S\boxminus\bold{q}_R={\rm Log}(\bold{q}^{\ast}_R\otimes \bold{q}_S) q⊞θ=q⊗Exp(θ)θ=qS⊟qR=Log(qR∗⊗qS)
在这两种情况下,请注意,即使向量差 θ \bm{\theta} θ通常被认为是很小的,上面的定义适用于 θ \bm{\theta} θ的任何值(直到SO(3)流形的第一个覆盖范围,也就是说,对于角 θ < π \theta < \pi θ<π
给定一个函数 f : R m → R n f:\mathbb{R}^m\to\mathbb{R}^{n} f:Rm→Rn
∂ f ( x ) ∂ x = lim δ x → 0 f ( x + δ x ) − f ( x ) δ x ∈ R n × m f ( x + Δ x ) ≈ f ( x ) + ∂ f ( x ) ∂ x Δ x ∈ R n \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{f\left( \bold{x}+\delta \bold{x}\right) -f\left( \bold{x}\right) }{\delta \bold{x}} \in\mathbb{R}^{n\times m} \\ f\left( \bold{x}+\Delta \bold{x}\right) \approx f\left( \bold{x}\right) +\dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\in \mathbb{R}^n ∂x∂f(x)=δx→0limδxf(x+δx)−f(x)∈Rn×mf(x+Δx)≈f(x)+∂x∂f(x)Δx∈Rn
给定函数 f : S O ( 3 ) → S O ( 3 ) f:SO(3)\to SO(3) f:SO(3)→SO(3), R ∈ S O ( 3 ) \bold{R} \in SO(3) R∈SO(3)和一个局部的小角度变化 θ ∈ R 3 \bm{\theta}\in\mathbb{R}^3 θ∈R3,我们使用 { ⊞ , ⊟ } \{\boxplus,\boxminus\} {⊞,⊟}定义导数:
∂ f ( R ) ∂ θ = lim δ θ → 0 f ( R ⊞ δ θ ) ⊟ f ( R ) δ θ = lim δ θ → 0 L o g ( f − 1 ( R ) f ( R E x p ( δ θ ) ) ) δ θ ∈ R 3 × 3 f ( R ⊞ Δ θ ) ≈ f ( R ) ⊞ ∂ f ( R ) ∂ θ Δ θ ≈ f ( R ) E x p ( ∂ f ( R ) ∂ θ Δ θ ) ∈ S O ( 3 ) \begin{aligned} \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }&=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}\boxplus \delta \bm{\theta} \right) \boxminus f\left( \bold{R}\right) }{\delta \bm{\theta} }\\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log}\left( f^{-1}\left( \bold{R}\right) f\left( \bold{R} {\rm Exp}\left( \delta \bm{\theta} \right) \right) \right) }{\delta \bm{\theta} }\quad\in \mathbb{R}^{3\times3}\\ f\left( \bold{R}\boxplus \Delta \bm{\theta} \right) &\approx f\left( \bold{R}\right) \boxplus \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }\Delta \bm{\theta} \approx f\left( \bold{R}\right) {\rm Exp}\left( \dfrac{\partial f\left( \bold{R} \right) }{\partial \bm{\theta} }\Delta \bm{\theta} \right) \quad\in SO(3) \end{aligned} ∂θ∂f(R)f(R⊞Δθ)=δθ→0limδθf(R⊞δθ)⊟f(R)=δθ→0limδθLog(f−1(R)f(RExp(δθ)))∈R3×3≈f(R)⊞∂θ∂f(R)Δθ≈f(R)Exp(∂θ∂f(R)Δθ)∈SO(3)
给定函数 f : R m → S O ( 3 ) f:\mathbb{R}^m\to SO(3) f:Rm→SO(3),用 ⊟ \boxminus ⊟进行 S O ( 3 ) SO(3) SO(3)差分,用-
进行向量差分。
∂ f ( x ) ∂ x = lim δ x → 0 f ( x + δ x ) ⊟ f ( x ) δ x = lim δ x → 0 L o g ( f − 1 ( x ) f ( x + δ x ) ) δ x ∈ R 3 × m f ( x + Δ x ) ≈ f ( x ) ⊞ ∂ f ( x ) ∂ x Δ x ≈ f ( x ) E x p ( ∂ f ( x ) ∂ x Δ x ) ∈ S O ( 3 ) \begin{aligned} \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}&=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{f\left( \bold{x}+\delta \bold{x}\right) \boxminus f\left( \bold{x}\right) }{\delta \bold{x}}\\ &=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{{\rm Log}\left( f^{-1}\left( \bold{x}\right) f\left( \bold{x}+\delta \bold{x}\right) \right) }{\delta \bold{x}}\quad\in\mathbb{R}^{3\times m}\\ f\left( \bold{x}+\Delta \bold{x}\right) &\approx f\left( \bold{x}\right) \boxplus \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\approx f\left( \bold{x}\right) {\rm Exp}\left( \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\right) \quad \in SO(3) \end{aligned} ∂x∂f(x)f(x+Δx)=δx→0limδxf(x+δx)⊟f(x)=δx→0limδxLog(f−1(x)f(x+δx))∈R3×m≈f(x)⊞∂x∂f(x)Δx≈f(x)Exp(∂x∂f(x)Δx)∈SO(3)
对于函数 f : S O ( 3 ) → R n f:SO(3)\to \mathbb{R}^{n} f:SO(3)→Rn,用 ⊞ \boxplus ⊞进行 S O ( 3 ) SO(3) SO(3)组合,用-
进行向量差分。
∂ f ( R ) ∂ θ = lim δ θ → 0 f ( R ⊞ δ θ ) − f ( R ) δ θ = lim δ θ → 0 f ( R E x p ( δ θ ) ) − f ( R ) δ θ ∈ R n × 3 f ( R ⊞ δ θ ) ≈ f ( R ) + ∂ f ( R ) ∂ θ Δ θ ∈ S O ( 3 ) \begin{aligned} \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }&=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}\boxplus \delta \bm{\theta} \right) -f\left( \bold{R}\right) }{\delta \bm{\theta} }\\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}{\rm Exp}\left( \delta \bm{\theta} \right) \right) -f\left( \bold{R}\right) }{\delta \bm{\theta} } \quad \in \mathbb{R}^{n\times 3}\\ f\left( \bold{R}\boxplus \delta \bm{\theta} \right) &\approx f\left( \bold{R}\right) +\dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }\Delta \bm{\theta} \quad \in SO(3) \end{aligned} ∂θ∂f(R)f(R⊞δθ)=δθ→0limδθf(R⊞δθ)−f(R)=δθ→0limδθf(RExp(δθ))−f(R)∈Rn×3≈f(R)+∂θ∂f(R)Δθ∈SO(3)
向量旋转对于向量的求导是容易的。
∂ ( q ⊗ p ⊗ q ∗ ) ∂ p = ∂ ( R p ) ∂ p = R \dfrac{\partial \left( \bold{q}\otimes \bold{p} \otimes \bold{q}^{\ast }\right) }{\partial \bold{p}}=\dfrac{\partial \left( \bold{Rp}\right) }{\partial \bold{p}}=\bold{R} ∂p∂(q⊗p⊗q∗)=∂p∂(Rp)=R
旋转对于四元数的导数是棘手的。为了方便起见,我们使用符号 q = [ w v ] = w + v \bold{q}=\begin{bmatrix}\bold{w} & \bold{v}\end{bmatrix}=\bold{w} + \bold{v} q=[wv]=w+v
p ′ = q ⊗ p ⊗ q ∗ = ( w + v ) ⊗ p ⊗ ( w − v ) = w 2 p + w ( v ⊗ p − p ⊗ v ) − v ⊗ p ⊗ v = w 2 p + 2 w ( v × p ) − [ ( − v T p + v × p ) ⊗ v ] = w 2 p + 2 w ( v × p ) − [ ( − v T p ) v − ( v × p ) T v + ( v × p ) × v ] = w 2 p + 2 w ( v × p ) − [ ( − v T p ) v + ( v T v ) p − ( v T p ) v ] = w 2 p + 2 w ( v × p ) + 2 ( v T p ) v − ( v T v ) p \begin{aligned} \bold{p}'&=\bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\\ &=\left( \bold{w}+\bold{v}\right) \otimes \bold{p}\otimes \left( \bold{w}-\bold{v}\right) \\ &=\bold{w}^{2}\bold{p}+\bold{w}\left( \bold{v}\otimes \bold{p}-\bold{p}\otimes \bold{v}\right) -\bold{v}\otimes \bold{p}\otimes \bold{v}\\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}+\bold{v}\times \bold{p}\right) \otimes \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}\right) \bold{v}-\bcancel{\left( \bold{v}\times \bold{p}\right) ^{T}\bold{v}}+\left( \bold{v}\times \bold{p}\right) \times \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}\right) \bold{v}+\left( \bold{v}^{T}\bold{v}\right) \bold{p}-\left( \bold{v}^{T}\bold{p}\right) \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) +2\left( \bold{v}^{T}\bold{p}\right) \bold{v}-\left( \bold{v}^{T}\bold{v}\right) \bold{p} \end{aligned} p′=q⊗p⊗q∗=(w+v)⊗p⊗(w−v)=w2p+w(v⊗p−p⊗v)−v⊗p⊗v=w2p+2w(v×p)−[(−vTp+v×p)⊗v]=w2p+2w(v×p)−[(−vTp)v−(v×p)Tv +(v×p)×v]=w2p+2w(v×p)−[(−vTp)v+(vTv)p−(vTp)v]=w2p+2w(v×p)+2(vTp)v−(vTv)p
进而我们能够提取出导数
∂ p ′ ∂ w = 2 w p + 2 v × p ∂ p ′ ∂ v = − 2 w p ∧ + 2 ( v p T + v T p I ) − 2 p v T = 2 ( v T p I + v p T − p v T − w p ∧ ) \begin{aligned} \dfrac{\partial \bold{p}'}{\partial \bold{w}}&=2\bold{wp}+2\bold{v}\times \bold{p}\\ \dfrac{\partial \bold{p}'}{\partial \bold{v}}&=-2\bold{wp}^{\wedge }+2\left( \bold{vp}^{T}+\bold{v}^{T}\bold{pI}\right) -2\bold{pv}^{T}\\ &=2\left( \bold{v}^{T}\bold{pI}+\bold{vp}^{T}-\bold{pv}^{T}-\bold{wp}^{\wedge}\right) \end{aligned} ∂w∂p′∂v∂p′=2wp+2v×p=−2wp∧+2(vpT+vTpI)−2pvT=2(vTpI+vpT−pvT−wp∧)
合并上式能够得出
∂ ( q ⊗ p ⊗ q ∗ ) ∂ q = 2 [ w p + 2 v × p v T p I + v p T − p v T − w p ∧ ] ∈ R 3 × 4 \dfrac{\partial \left( \bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\right) }{\partial \bold{q}}=2\begin{bmatrix} \bold{wp}+2\bold{v}\times \bold{p} & \bold{v}^{T}\bold{pI}+\bold{vp}^{T}-\bold{pv}^{T}-\bold{wp}^{\wedge} \end{bmatrix}\in{\mathbb{R}^{3\times 4}} ∂q∂(q⊗p⊗q∗)=2[wp+2v×pvTpI+vpT−pvT−wp∧]∈R3×4
E x p ( θ ) ⊞ δ ϕ = E x p ( θ + δ θ ) ⟺ E x p ( θ ) ⋅ E x p ( δ ϕ ) = E x p ( θ + δ θ ) ⟺ δ ϕ = L o g ( E x p ( θ ) − 1 E x p ( θ + δ θ ) ) = E x p ( θ + δ θ ) ⊟ E x p ( θ ) \begin{aligned} &{\rm Exp}\left( \bm{\theta} \right) \boxplus \delta \bm{\phi} ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \\ \iff &{\rm Exp}\left( \bm{\theta} \right) \cdot {\rm Exp}\left( \delta \bm{\phi} \right) ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \\ \iff &\delta \bm{\phi} ={\rm Log}\left( {\rm Exp}\left( \bm{\theta} \right) ^{-1}{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \boxminus {\rm Exp}\left( \bm{\theta} \right) \end{aligned} ⟺⟺Exp(θ)⊞δϕ=Exp(θ+δθ)Exp(θ)⋅Exp(δϕ)=Exp(θ+δθ)δϕ=Log(Exp(θ)−1Exp(θ+δθ))=Exp(θ+δθ)⊟Exp(θ)
δ ϕ \delta \bm{\phi} δϕ相对于 δ θ \delta \bm{\theta} δθ的微分
∂ δ ϕ ∂ δ θ = lim δ θ → 0 δ ϕ δ θ = lim δ θ → 0 E x p ( θ + δ θ ) ⊟ E x p ( θ ) δ θ \dfrac{\partial \delta \bm{\phi} }{\partial \delta \bm{\theta} }=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{\delta \bm{\phi} }{\delta \bm{\theta} }=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \boxminus {\rm Exp}\left( \bm{\theta} \right) }{\delta \bm{\theta} } ∂δθ∂δϕ=δθ→0limδθδϕ=δθ→0limδθExp(θ+δθ)⊟Exp(θ)
这个Jacobian矩阵就是熟知的 S O ( 3 ) SO(3) SO(3)的右Jacobian矩阵,其定义为:
J r ( θ ) = ∂ E x p ( θ ) ∂ θ = lim δ θ → 0 E x p ( θ + δ θ ) ⊗ E x p ( θ ) δ θ = lim δ θ → 0 L o g ( E x p ( θ ) T E x p ( θ + δ θ ) ) δ θ if using R = lim δ θ → 0 L o g ( E x p ( θ ) ∗ ⊗ E x p ( θ + δ θ ) ) δ θ if using q \begin{aligned} \bold{J}_{r}\left( \bm{\theta} \right) &=\dfrac{\partial {\rm Exp}\left( \bm{\theta} \right) }{\partial \bm{\theta} } \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \otimes {\rm Exp}\left( \bm{\theta} \right) }{\delta \bm{\theta} } \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log}\left( {\rm Exp}\left( \bm{\theta} \right) ^{T}{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) }{\delta \bm{\theta} }\qquad \text{if using }\bold{R} \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log} \left( {\rm Exp}\left( \bm{\theta} \right) ^{\ast }\otimes {\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) }{\delta \bm{\theta} } \qquad \text{if using }\bold{q} \end{aligned} Jr(θ)=∂θ∂Exp(θ)=δθ→0limδθExp(θ+δθ)⊗Exp(θ)=δθ→0limδθLog(Exp(θ)TExp(θ+δθ))if using R=δθ→0limδθLog(Exp(θ)∗⊗Exp(θ+δθ))if using q
右Jacobian矩阵及其逆矩阵的封闭形式可以计算出:
J r ( θ ) = I − 1 − cos ∥ θ ∥ ∥ θ ∥ 2 θ ∧ + ∥ θ ∥ − sin ∥ θ ∥ ∥ θ ∥ 3 θ ∧ 2 J r − 1 ( θ ) = I + 1 2 θ ∧ + ( 1 ∥ θ ∥ 2 − 1 + cos ∥ θ ∥ 2 ∥ θ ∥ sin ∥ θ ∥ ) θ ∧ 2 \bold{J}_{r}\left( \bm{\theta} \right) =I-\dfrac{1-\cos \left\| \bm{\theta} \right\| }{\left\| \bm{\theta} \right\| ^{2}}\bm{\theta} ^{\wedge }+\dfrac{\left\| \bm{\theta} \right\| -\sin \left\| \bm{\theta} \right\| }{\left\| \bm{\theta} \right\| ^{3}}\bm{\theta} ^{\wedge2}\\ \bold{J}_{r}^{-1}\left( \bm{\theta} \right) =I+\dfrac{1}{2}\bm{\theta} ^{\wedge }+\left( \dfrac{1}{\left\| \bm{\theta} \right\| ^{2}}-\dfrac{1+\cos \left\| \bm{\theta} \right\| }{2\left\| \bm{\theta} \right\| \sin \left\| \bm{\theta} \right\| }\right) \bm{\theta} ^{\wedge 2} Jr(θ)=I−∥θ∥21−cos∥θ∥θ∧+∥θ∥3∥θ∥−sin∥θ∥θ∧2Jr−1(θ)=I+21θ∧+(∥θ∥21−2∥θ∥sin∥θ∥1+cos∥θ∥)θ∧2
SO(3)的右Jacobian矩阵对于任意 θ \bm{\theta} θ和小量 δ θ \delta \bm{\theta} δθ具有以下性质:
E x p ( θ + δ θ ) ≈ E x p ( θ ) E x p ( J r ( θ ) δ θ ) E x p ( θ ) E x p ( δ θ ) ≈ E x p ( θ + J r − 1 ( θ ) δ θ ) \begin{aligned} {\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) &\approx {\rm Exp}\left( \bm{\theta} \right) {\rm Exp}\left( \bold{J}_{r}\left( \bm{\theta} \right) \delta \bm{\theta} \right) \\ {\rm Exp}\left( \bm{\theta} \right) {\rm Exp}\left( \delta \bm{\theta} \right) &\approx {\rm Exp}\left( \bm{\theta} +\bold{J}_{r}^{-1}\left( \bm{\theta} \right) \delta \bm{\theta} \right) \end{aligned} Exp(θ+δθ)Exp(θ)Exp(δθ)≈Exp(θ)Exp(Jr(θ)δθ)≈Exp(θ+Jr−1(θ)δθ)
∂ ( q ⊗ p ⊗ q ∗ ) ∂ δ θ = ∂ ( R p ) ∂ δ θ = − R { θ } p ∧ J r ( θ ) \dfrac{\partial \left( \bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\right) }{\partial \delta \bm{\theta} }=\dfrac{\partial \left( \bold{R} \bold{p}\right) }{\partial \delta \bm{\theta} }=-\bold{R}\left\{ \bm{\theta} \right\} \bold{p}^{\wedge} \bold{J}_{r}\left( \bm{\theta} \right) ∂δθ∂(q⊗p⊗q∗)=∂δθ∂(Rp)=−R{θ}p∧Jr(θ)
被扰动的朝向 q ~ \tilde{\bold{q}} q~可表示为未经扰动的朝向 q \bold{q} q与局部小扰动 Δ q L \Delta \bold{q}_{\mathcal{L}} ΔqL的组合。由于Hamilton约定,这个局部扰动出现在复合积的右边,我们也可以给出等价的旋转矩阵形式
q ~ = q ⊗ Δ q L R ~ = R Δ R L \tilde{\bold{q}}=\bold{q} \otimes \Delta \bold{q}_{\mathcal{L}}\qquad \tilde{\bold{R}}=\bold{R}\Delta \bold{R}_{\mathcal{L}} q~=q⊗ΔqLR~=RΔRL
局部扰动很容易通过指数映射转换为切空间中定义的等效向量形式:
q ~ L = q L ⊗ E x p ( Δ ϕ L ) R ~ L = R L E x p ( Δ ϕ L ) \tilde{\bold{q}}_{\mathcal{L}}=\bold{q}_{\mathcal{L}}\otimes {\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) \qquad \tilde{\bold{R}}_{\mathcal{L}}=\bold{R}_{\mathcal{L}}{\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) q~L=qL⊗Exp(ΔϕL)R~L=RLExp(ΔϕL)
局部扰动的表示为:
Δ ϕ L = L o g ( q L ∗ ⊗ q ~ L ) = L o g ( R L T ⋅ R ~ L ) \Delta \bm{\phi} _{\mathcal{L}}={\rm Log}\left(\bold{q}_{\mathcal{L}}^{\ast } \otimes \tilde{\bold{q}}_{\mathcal{L}}\right) ={\rm Log}\left( \bold{R}_{\mathcal{L}}^{T}\cdot\tilde{\bold{R}}_{\mathcal{L}} \right) ΔϕL=Log(qL∗⊗q~L)=Log(RLT⋅R~L)
如果扰动角 Δ ϕ L \Delta \bm{\phi}_{\mathcal{L}} ΔϕL足够小,则四元数形式的扰动和旋转矩阵形式的扰动可以近似为泰勒展开直到线性项
Δ q L = E x p ( Δ ϕ L ) ≈ 1 + 1 2 Δ ϕ L = [ 1 1 2 Δ ϕ L ] Δ R L = E x p ( Δ ϕ L ) = I + Δ ϕ L ∧ \begin{aligned} \Delta \bold{q}_{\mathcal{L}}&={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) \approx1+\dfrac{1}{2}\Delta \bm{\phi} _{\mathcal{L}}=\begin{bmatrix} 1 \\ \dfrac{1}{2}\Delta \bm{\phi} _{\mathcal{L}} \end{bmatrix} \\ \Delta \bold{R}_{\mathcal{L}}&={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) =I+\Delta \bm{\phi} _{\mathcal{L}}^{\wedge} \end{aligned} ΔqLΔRL=Exp(ΔϕL)≈1+21ΔϕL=[121ΔϕL]=Exp(ΔϕL)=I+ΔϕL∧
因此,扰动可以在与 S O ( 3 ) SO(3) SO(3)流形相切的局部向量空间中指定。在这个向量空间中表示这些扰动的协方差矩阵是很方便的,即用一个3×3协方差矩阵表示。
全局扰动出现在复合积的左侧
q ~ G = E x p ( Δ ϕ G ) ⊗ q G R ~ G = E x p ( Δ ϕ G ) ⋅ R G \tilde{\bold{q}}_{\mathcal{G}}={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{G}}\right) \otimes \bold{q}_{\mathcal{G}} \qquad \tilde{\bold{R}}_{\mathcal{G}}={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{G}}\right) \cdot \bold{R}_{\mathcal{G}} q~G=Exp(ΔϕG)⊗qGR~G=Exp(ΔϕG)⋅RG
全局扰动的表示为:
Δ ϕ G = L o g ( q ~ G ⊗ q G ∗ ) = L o g ( R ~ G ⋅ R G T ) \Delta \bm{\phi} _{\mathcal{G}}={\rm Log}\left( \tilde{\bold{q}}_{\mathcal{G}}\otimes \bold{q}_{\mathcal{G}}^{\ast }\right) ={\rm Log}\left( \tilde{\bold{R}}_{\mathcal{G}}\cdot \bold{R}_{\mathcal{G}}^{T}\right) ΔϕG=Log(q~G⊗qG∗)=Log(R~G⋅RGT)
全局扰动可以在与SO(3)流形原点处相切的向量空间中指定。
在向量空间中表示局部扰动,我们可以很容易地得到时间导数的表达式。只要考虑 q = q ( t ) \bold{q} = \bold{q}(t) q=q(t)为原始状态, q ~ = q ( t + Δ t ) \tilde{\bold{q}} = \bold{q}(t +\Delta t) q~=q(t+Δt)为扰动状态,并应用导数的定义
q ˙ = lim Δ t → 0 q ( t + Δ t ) − q ( t ) Δ t = lim Δ t → 0 q ⊗ Δ q L − q Δ t = lim Δ t → 0 q ⊗ ( [ 1 Δ ϕ L / 2 ] − [ 1 0 ] ) Δ t = lim Δ t → 0 q ⊗ [ 0 Δ ϕ L / 2 ] Δ t = 1 2 q ⊗ [ 0 ω L ] \begin{aligned} \dot{\bold{q}}&=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\left( t+\Delta t\right) -\bold{q}\left( t\right) }{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \Delta \bold{q}_{\mathcal{L}}-\bold{q}}{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \left( \begin{bmatrix} 1 \\ \Delta \bm{\phi} _{\mathcal{L}}/2 \end{bmatrix}-\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) }{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \begin{bmatrix} 0 \\ \Delta \bm{\phi} _{\mathcal{L}}/2 \end{bmatrix}}{\Delta t} \\ &=\dfrac{1}{2}\bold{q}\otimes \begin{bmatrix} 0 \\ \bm{\omega} _{\mathcal{L}} \end{bmatrix} \end{aligned} q˙=Δt→0limΔtq(t+Δt)−q(t)=Δt→0limΔtq⊗ΔqL−q=Δt→0limΔtq⊗([1ΔϕL/2]−[10])=Δt→0limΔtq⊗[0ΔϕL/2]=21q⊗[0ωL]
其中 Δ ϕ L \Delta \bm{\phi}_{\mathcal{L}} ΔϕL为局部扰动角,对应于由 q \bold{q} q定义的局部坐标系, ω L \bm{\omega}_{\mathcal{L}} ωL是对应的角度变化率
ω L ( t ) = d ϕ L ( t ) d t = lim Δ t → 0 Δ ϕ L Δ t \bm{\omega} _{L}\left( t\right) =\dfrac{d\bm{\phi} _{\mathcal{L}}\left( t\right) }{dt}=\lim _{\Delta t\rightarrow 0}\dfrac{\Delta \bm{\phi} _{\mathcal{L}}}{\Delta t} ωL(t)=dtdϕL(t)=Δt→0limΔtΔϕL
定义
Ω ( ω ) ≜ [ ω ] R = [ 0 − ω T ω − ω ∧ ] \bold{\Omega}(\bm{\omega})\triangleq \left[ \bm{\omega} \right]_R= \begin{bmatrix} 0&-\bm{\omega}^T\\ \bm{\omega} & -\bm{\omega}^{\wedge} \end{bmatrix} Ω(ω)≜[ω]R=[0ω−ωT−ω∧]
可以得到
q ˙ = 1 2 Ω ( ω L ) q = 1 2 q ⊗ ω L , R ˙ = R ω L ∧ (1) \dot{\bold{q}}=\dfrac{1}{2}\bold{\Omega}(\bm{\omega}_{\mathcal{L}})\bold{q}=\dfrac{1}{2}\bold{q}\otimes \bm{\omega}_{\mathcal{L}},\qquad \dot{\bold{R}}=\bold{R}\bm{\omega}_{\mathcal{L}}^{\wedge}\tag{1} q˙=21Ω(ωL)q=21q⊗ωL,R˙=RωL∧(1)
这些表达式也可以在旋转群 S O ( 3 ) SO(3) SO(3)的框架中得出的.然而在微分框架下,我们能够清楚地将角速度 ω L \bm{\omega}_{\mathcal{L}} ωL与一个特定的参考系联系起来.在上面这种情况下这个参考系是由方向 q \bold{q} q或 R \bold{R} R定义的局部坐标系.
与全局扰动相关的时间导数同理可得,其结果为
q ˙ = 1 2 ω G ⊗ q , R ˙ = ω G ∧ R (2) \dot{\bold{q}}=\dfrac{1}{2}\bm{\omega}_{\mathcal{G}}\otimes \bold{q},\qquad \dot{\bold{R}}=\bm{\omega}_{\mathcal{G}}^{\wedge}\bold{R} \tag{2} q˙=21ωG⊗q,R˙=ωG∧R(2)
其中
ω G ( t ) ≜ d ϕ G d t \bm{\omega}_{\mathcal{G}}(t)\triangleq \dfrac{{\rm d}\bm{\phi}_{\mathcal{G}}}{{\rm d}t} ωG(t)≜dtdϕG
是在全局坐标系中表示的角速度向量.
1 2 ω G ⊗ q = q ˙ = 1 2 q ⊗ ω L ⟹ ω G = q ⊗ ω L ⊗ q ∗ = R ω L \dfrac{1}{2}\bm{\omega}_{\mathcal{G}}\otimes \bold{q}=\dot{\bold{q}}= \dfrac{1}{2}\bold{q}\otimes \bm{\omega}_{\mathcal{L}}\\ \implies \bm{\omega}_{\mathcal{G}}=\bold{q}\otimes \bm{\omega}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \bm{\omega}_{\mathcal{L}} 21ωG⊗q=q˙=21q⊗ωL⟹ωG=q⊗ωL⊗q∗=RωL
类似的,考虑 Δ ϕ ≈ ω Δ t \Delta \bm{\phi} \approx \bm{\omega} \Delta t Δϕ≈ωΔt
Δ ϕ G = q ⊗ Δ ϕ L ⊗ q ∗ = R Δ ϕ L \Delta\bm{\phi}_{\mathcal{G}}=\bold{q}\otimes \Delta\bm{\phi}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \Delta\bm{\phi}_{\mathcal{L}} ΔϕG=q⊗ΔϕL⊗q∗=RΔϕL
也就是说,我们可以使用四元数或旋转矩阵将角速率向量 ω \bm{\omega} ω和小角扰动 Δ ϕ \Delta \bm{\phi} Δϕ进行坐标系变换,就像它们是普通向量一样。
由 ω = u ω \bm{\omega} = \bold{u}\bm{\omega} ω=uω,或 Δ ϕ = u Δ ϕ \Delta \bm{\phi} = \bold{u}\Delta\bm{\phi} Δϕ=uΔϕ且旋转不改变向量长度,可以得到
u G = q ⊗ u L ⊗ q ∗ = R u L \bold{u}_{\mathcal{G}}=\bold{q}\otimes \bold{u}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \bold{u}_{\mathcal{L}} uG=q⊗uL⊗q∗=RuL
对局部旋转速度定义的微分方程为(1),对全局旋转速率定义的微分方程为(2)。通过对旋转速度的微分方程积分来完成以四元数形式积分旋转随时间的变化。在通常的情况下,角速度由局部传感器测量,从而在离散时间 t n = n Δ t t_n = n\Delta t tn=nΔt时提供局部测量 ω ( t n ) \bm{\omega}(t_n) ω(tn)。因为我们主要关注微分方程(1)。
q ˙ ( t ) = 1 2 q ( t ) ⊗ ω ( t ) \dot{\bold{q}}(t)=\dfrac{1}{2}\bold{q}(t)\otimes \bm{\omega}(t) q˙(t)=21q(t)⊗ω(t)
定义 q n ≜ q ( t n ) , ω n ≜ ω ( t n ) \bold{q}_n\triangleq \bold{q}(t_n),\bm{\omega}_n\triangleq \bm{\omega}(t_n) qn≜q(tn),ωn≜ω(tn),由泰勒展开可得:
q n + 1 = q n + q ˙ n Δ t + 1 2 ! q ¨ n Δ t 2 + 1 3 ! q n ( 3 ) Δ t 3 + ⋯ \bold{q}_{n+1}=\bold{q}_{n}+\dot{\bold{q}}_{n}\Delta t+\dfrac{1}{2!}\ddot{\bold{q}}_{n}\Delta t^{2}+\dfrac{1}{3!}{\bold{q}}^{(3)}_{n}\Delta t^{3}+\cdots qn+1=qn+q˙nΔt+2!1q¨nΔt2+3!1qn(3)Δt3+⋯
反复运用四元数导数的表达式,假设 ω ¨ = 0 \ddot{\bm{\omega}}=0 ω¨=0,可以很容易的得到 q n \bold{q}_n qn的逐次导数
q ˙ n = 1 2 q n ω n q ¨ n = 1 2 2 q n ω n 2 + 1 2 q n ω ˙ q ¨ n = 1 2 3 q n ω n 3 + 1 2 2 q n ω ˙ ω n + 1 2 q n ω n ω ˙ q n ( i ⩾ 4 ) = 1 2 i q n ω n i + ⋯ \begin{aligned} \dot{\bold{q}}_{n}&=\dfrac{1}{2}\bold{q}_{n}\bm{\omega}_{n}\\ \ddot{\bold{q}}_{n}&=\dfrac{1}{2^{2}}\bold{q}_{n}\bm{\omega}_{n}^{2}+\dfrac{1}{2}\bold{q}_{n}\dot{\bm{\omega} } \\ \ddot{\bold{q}}_{n}&=\dfrac{1}{2^{3}}\bold{q}_{n}\bm{\omega}_{n}^{3}+\dfrac{1}{2^2}\bold{q}_{n}\dot{\bm{\omega} }\bm{\omega}_n+\dfrac{1}{2}\bold{q}_n\bm{\omega}_n\dot{\bm{\omega}}\\ \bold{q}_n^{(i\geqslant 4)}&=\dfrac{1}{2^i}\bold{q}_n\bm{\omega}_n^i+\cdots \end{aligned} q˙nq¨nq¨nqn(i⩾4)=21qnωn=221qnωn2+21qnω˙=231qnωn3+221qnω˙ωn+21qnωnω˙=2i1qnωni+⋯
前向积分
如果在 [ t n , t n + 1 ] [t_n,t_{n+1}] [tn,tn+1]期间是匀角速度运动,即 ω = 0 ˙ \dot{\bm{\omega}=0} ω=0˙,则有
q n + 1 = q n ⊗ ( 1 + 1 2 ω n Δ t + 1 2 ! ( 1 2 ω n Δ t ) 2 + 1 3 ! ( 1 2 ω n Δ t ) 3 + ⋯ ) \bold{q}_{n+1}=\bold{q}_{n}\otimes \left( 1+\dfrac{1}{2}\bm{\omega}_{n}\Delta t+\dfrac{1}{2!}\left( \dfrac{1}{2}\bm{\omega}_{n}\Delta t\right) ^{2}+\dfrac{1}{3!}\left( \dfrac{1}{2}\bm{\omega}_{n}\Delta t\right) ^{3}+\cdots \right) qn+1=qn⊗(1+21ωnΔt+2!1(21ωnΔt)2+3!1(21ωnΔt)3+⋯)
这里我们很容易就可以识别出其中的泰勒展开级数就是 e ω n Δ t / 2 e^{\bm{\omega}_n\Delta t/2} eωnΔt/2,这个指数对应于增量旋转为 θ = ω Δ t \bm{\theta}=\bm{\omega} \Delta t θ=ωΔt
e ω Δ t / 2 = ω Δ t = q { ω Δ t } = [ cos ( ∥ ω ∥ Δ t / 2 ) ω ∥ ω ∥ sin ( ∥ ω ∥ Δ t / 2 ) ] e^{\bm{\omega} \Delta t/2}={\rm \bm{\omega}\Delta t}=\bold{q}\{\bm{\omega} \Delta t\}= \begin{bmatrix} \cos(\Vert\bm{\omega}\Vert\Delta t/2)\\ \frac{\bm{\omega}}{\Vert\bm{\omega}\Vert}\sin(\Vert\bm{\omega}\Vert\Delta t/2) \end{bmatrix} eωΔt/2=ωΔt=q{ωΔt}=[cos(∥ω∥Δt/2)∥ω∥ωsin(∥ω∥Δt/2)]
因此,
q n + 1 = q n ⊗ q { ω n Δ t } \bold{q}_{n+1}=\bold{q}_n\otimes \bold{q}\{\bm{\omega}_n \Delta t\} qn+1=qn⊗q{ωnΔt}
反向积分
我们也可以认为周期 Δ t \Delta t Δt上的恒定角速度为 ω n + 1 \bm{\omega}_{n+1} ωn+1,即周期结束时测量的角速度。用类似的方式在将 q n \bold{q}_n qn在 t n + 1 t_{n+1} tn+1时刻泰勒展开,可以得到
q n = q n + 1 + q ˙ n + 1 ( − Δ t ) + 1 2 ! q ¨ n + 1 ( − Δ t ) 2 + 1 3 ! q n + 1 ( 3 ) ( − Δ t ) 3 + ⋯ \bold{q}_{n}=\bold{q}_{n+1}+\dot{\bold{q}}_{n+1}\left( -\Delta t\right) +\dfrac{1}{2!}\ddot{\bold{q}}_{n+1}\left( -\Delta t\right) ^{2}+\dfrac{1}{3!}\bold{q}_{n+1}^{\left( 3\right) }\left( -\Delta t\right) ^{3}+\cdots qn=qn+1+q˙n+1(−Δt)+2!1q¨n+1(−Δt)2+3!1qn+1(3)(−Δt)3+⋯
类似的,假设 ω ˙ = 0 \dot{\bm{\omega}}=0 ω˙=0
q n + 1 ( i ) = q n + 1 ⊗ ( 1 2 ω n + 1 ) i {\bold{q}}^{(i)}_{n+1}=\bold{q}_{n+1}\otimes(\frac{1}{2}\bm{\omega}_{n+1})^i qn+1(i)=qn+1⊗(21ωn+1)i
于是
q n = q n + 1 ⊗ [ ∑ k = 0 ∞ 1 k ! ( − 1 2 ω n + 1 Δ t ) k ] = q n + 1 ⊗ E x p ( − ω n + 1 Δ t ) ⟹ q n + 1 = q n ⊗ E x p ( ω n + 1 Δ t ) \begin{aligned} \bold{q}_n&=\bold{q}_{n+1}\otimes\left[\sum_{k=0}^\infty \frac{1}{k!}\left(-\frac{1}{2}\bm{\omega}_{n+1}\Delta t\right)^k\right]\\ &=\bold{q}_{n+1}\otimes {\rm Exp}(-\bm{\omega}_{n+1}\Delta t) \\ \implies \bold{q}_{n+1}&=\bold{q}_n\otimes {\rm Exp}(\bm{\omega}_{n+1}\Delta t) \end{aligned} qn⟹qn+1=qn+1⊗[k=0∑∞k!1(−21ωn+1Δt)k]=qn+1⊗Exp(−ωn+1Δt)=qn⊗Exp(ωn+1Δt)
所以最终可得
q n + 1 ≈ q n ⊗ q { ω n + 1 Δ t } \bold{q}_{n+1}\approx \bold{q}_n\otimes \bold{q}\{\bm{\omega}_{n+1}\Delta t\} qn+1≈qn⊗q{ωn+1Δt}
中点积分
类似的,认为周期 Δ t \Delta t Δt上的恒定角速度为中间角速度(不一定是周期中点角速度)
ω ˉ = ω n + ω n + 1 2 \bar{\bm{\omega}}=\frac{\bm{\omega}_{n}+\bm{\omega}_{n+1}}{2} ωˉ=2ωn+ωn+1
则有
q n + 1 ≈ q n ⊗ q { ω ˉ Δ t } \bold{q}_{n+1}\approx \bold{q}_n\otimes \bold{q}\{\bar{\bm{\omega}}\Delta t\} qn+1≈qn⊗q{ωˉΔt}