C3D Introduction
卷积神经网络(CNN)近年被广泛应用于计算机视觉中,包括分类、检测、分割等任务。这些任务一般都是针对图像进行的,使用的是二维卷积(即卷积核的维度为二维)。而基于视频的问题,提特征的方法主要分为双流和C3D两个分支,目前C3D衍生出P3D,I3D等等,这里只介绍最早的C3D caffe版提取特征的步骤以及遇到的问题。
C3D 用caffe实现
官网
github
C3D Installation
C3D User Guide
Du Tran (Last modified Mar 20, 2017)
C3D-v1.1 is released with new models (Mar 01, 2017).
No documentationfor v1.1 yet, but some examples for feature extraction, training, and fine-tuning are provided.
文档介绍了C3D 1.0的用法,至于1.1,只有examples。
I.C3D Feature Extration
安装好C3D,下载预训练的模型,保存到
YOUR_PATH_TO_C3D/C3D-master/C3D-v1.0/examples/c3d_feature_extraction
change dir to
YOUR_PATH_TO_C3D/C3D-master/C3D-v1.0/examples/c3d_feature_extraction
Run:
sh c3d_sport1m_feature_extraction_frm.shorsh c3d_sport1m_feature_extraction_video.sh
运行成功将在output文件夹找到特征文件。
遇到“out of memeory”内存不足的错误,调整min_batch_size参数。参见章节 I.B。
如能使用图片输入,不能使用视频输入。请确保编译OpenCV和ffmpeg时”shared-flags”为”on”。
I.A Extract C3D features for your own videos or frames
a.准备输入文件
输入为视频或视频帧
对于视频文件,由于使用opencv获得帧,帧数从0开始。
对于视频帧,命名为“video_folder/%06d.jpg”,帧数从1开始。一个文件夹最多999999个帧,如果视频超出999999帧,需要分成多个文件夹。
b.准备配置文件(具体可以参考默认的两个例子修改)
两个设置选项:输入列表(input_list) 和 输出前缀(output_prefix)
在example中,输入列表的配置文件为: “prototxt/input_list_video.txt”和”prototxt/input_list_frm.txt”。
input_list文件需要制定输入的列表,格式为每行制定一个输入。每行的格式为
input/frm/v_ApplyEyeMakeup_g01_c01/ 1 0input/frm/v_ApplyEyeMakeup_g01_c01/ 17 0input/frm/v_ApplyEyeMakeup_g01_c01/ 33 0input/frm/v_ApplyEyeMakeup_g01_c01/ 49 0input/frm/v_ApplyEyeMakeup_g01_c01/ 65 0input/frm/v_ApplyEyeMakeup_g01_c01/ 81 0input/frm/v_ApplyEyeMakeup_g01_c01/ 97 0input/frm/v_ApplyEyeMakeup_g01_c01/ 113 0input/frm/v_ApplyEyeMakeup_g01_c01/ 129 0input/frm/v_ApplyEyeMakeup_g01_c01/ 145 0
“string_path”: 为路径,对视频,为视频路径和文件名;对frames,是包含视频帧的目录路径。
“starting_frame”: C3D能从长为16帧的视频中提取特征。一个视频包含了大量的帧,我们需要指定C3D从哪一帧开始提取特征。例如上面例子中的视频一共有165帧,那么最后一行对应的145帧开始提取特征,取16帧,使用145帧-161帧的数据。在这里如果取用的帧的编号超过总帧数165,则会报错,要注意这一点。
“label”: 这个仅对训练、测试、调优起作用,提取特征的时候会被忽略,设置为0。
output_prefix文件要为每一个输入指定一个输出前缀。即行数与input_list一致。每行的格式为:
C3D将特征输出到 output_prefix.[feature_name]文件(例如prefix.fc6)。为了与输入对应,输出建议采用如下格式`sprintf(“output_folder/%06d”, starting_frame)。
c.提取特征
在prototxt中,通过后缀名为.prototxt的文档来指向你的输入列表文件。
主要修改这两行:
source: “prototxt/input_list_video.txt”
use_image:falseshuffle:false
source 修改为输入列表文件
如果使用图像文件,use_image修改为true。
提取特征时确保shuffle为false。
(.prototxt文件第一行是name,接下来是若干个layer,layer用json表示,我们只需要修改第一个输入layer。)
mean_file: "sport1m_train16_128_mean.binaryproto"
这里是使用的均值文件的路径,根据所使用的模型生成或选择均值文件即可
另外也可根据需求修改其他参数。
接下来使用extract_image_features工具来提取特征。
该工具使用的参数如下
extract_image_features.bin ...
feature_extractor_prototxt_file:
.prototxt文件,指向input_list_file,如prototxt/c3d_sport1m_feature_extractor_video.prototxt是demo所使用的prototxt文档
c3d_pre_trained_model:
下载的C3D预训练模型,如conv3d_deepnetA_sport1m_iter_1900000
gpu_id:
GPU ID,从0开始。设为-1则使用CPU
mini_batch_size:
批处理大小。默认值为50。根据GPU的性能修改。
number_of_mini_batches
批处理数量。
如果有100个clips,设置为50,则为2。
如果有101个clips,设置为50,则为3。
(就是ceil除法嘛)
output_prefix_file:
输出前缀文件
feature_name1:
特征名。(参见.prototxt文件的layers, 如 fc6-1, fc7-1, fc8-1, pool5, conv5b, prob,…)
example中的命令行如下:
GLOG_logtosterr=1 ../../build/tools/extract_image_features.bin prototxt/c3d_sport1m_feature_extractor_frm.prototxt conv3d_deepnetA_sport1m_iter_1900000 0 50 1 prototxt/output_list_prefix.txt fc7-1 fc6-1 prob
其他注意事项
输出的特征文件所保存的路径必须自己生成,C3D不会创建文件夹
如果提示“out ofmemory”可以尝试减小batch size
提取的特征是二进制文件,需要进行格式转换才能正常处理
其他的注意事项可以参考官方的用户指南
问题及解决方法:
1. 运行成功但无法得到输出特征
完全按demo的路径配置一遍即可
2. 使用多batch提大量视频的特征
F0914 17:45:44.359544 287137792 video_data_layer.cpp:123] Check failed: read_status Testing must not miss any example
暂时的解决办法是设batchsize为1,将input_list和output_prefix切分为batch大小,一次一batch跑
1 frame_num=100000
2 for((i=1;i<=frame_num;i=i+50))3 do
4 j=49
5 num=$(($i+$j))6 sed -n ''$i','$num'p' prototxt/input_list_frm.txt > prototxt/tmp_input_list_frm.txt7 sed -n ''$i','$num'p' prototxt/output_list_prefix.txt > prototxt/tmp_output_list_prefix.txt8 GLOG_logtosterr=1 ../../build/tools/extract_image_features.bin prototxt/c3d_sport1m_feature_extractor_frm.prototxt conv3d_deepnetA_sport1m_iter_1900000 0 50 1 prototxt/tmp_output_list_prefix.txt fc6-1
9 done
参考:
https://annazhou.github.io/2015/12/09/c3d/
https://www.cnblogs.com/yaoyaoliu/p/6929234.html