chainer-语义分割-LinkNet【附源码】

文章目录

  • 前言
  • 一、LinkNet官网图
  • 二、LinkNet代码实现
  • 三.调用方法


前言

本文主要基于LinkNet的网络结构搭建
配合文章:语义分割框架链接


一、LinkNet官网图

chainer-语义分割-LinkNet【附源码】_第1张图片
chainer-语义分割-LinkNet【附源码】_第2张图片
chainer-语义分割-LinkNet【附源码】_第3张图片

二、LinkNet代码实现

def parse_dict(dic, key, value=None):
    return value if not key in dic else dic[key]

class Conv(chainer.Chain):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(Conv, self).__init__()
        with self.init_scope():
            if upsample:
                self.conv = L.Deconvolution2D(in_ch, out_ch, ksize, stride, pad, nobias=nobias, outsize=outsize)
            else:
                if dilation > 1:
                    self.conv = L.DilatedConvolution2D(in_ch, out_ch, ksize, stride, pad, dilation, nobias=nobias)
                else:
                    self.conv = L.Convolution2D(in_ch, out_ch, ksize, stride, pad, nobias=nobias)

    def __call__(self, x):
        return self.conv(x)

    def predict(self, x):
        return self.conv(x)

class ConvBN(Conv):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(ConvBN, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample, outsize)
        self.add_link("bn", L.BatchNormalization(out_ch, eps=1e-5, decay=0.95))

    def __call__(self, x):
        return self.bn(self.conv(x))

    def predict(self, x):
        return self.bn(self.conv(x))

class ConvReLU(Conv):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(ConvReLU, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample, outsize)

    def __call__(self, x):
        return F.relu(self.conv(x))

    def predict(self, x):
        return F.relu(self.conv(x))

class ConvBNReLU(ConvBN):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(ConvBNReLU, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample, outsize)

    def __call__(self, x):
        return F.relu(self.bn(self.conv(x)))

    def predict(self, x):
        return F.relu(self.bn(self.conv(x)))

class ConvPReLU(Conv):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(ConvPReLU, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample, outsize)
        self.add_link("prelu", L.PReLU())

    def __call__(self, x):
        return self.prelu(self.conv(x))

    def predict(self, x):
        return self.prelu(self.conv(x))

class ConvBNPReLU(ConvBN):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None):
        super(ConvBNPReLU, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample, outsize)
        self.add_link("prelu", L.PReLU())

    def __call__(self, x):
        return self.prelu(self.bn(self.conv(x)))

    def predict(self, x):
        return self.prelu(self.bn(self.conv(x)))

class SymmetricConvPReLU(chainer.Chain):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=None):
        super(SymmetricConvPReLU, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(in_ch, out_ch, (ksize, 1), stride, pad, nobias=nobias)
            self.conv2 = L.Convolution2D(in_ch, out_ch, (1, ksize), stride, pad, nobias=nobias)
            self.prelu = L.PReLU()

    def __call__(self, x):
        return self.prelu(self.conv2(self.conv1(x)))

    def predict(self, x):
        return self.prelu(self.conv2(self.conv1(x)))

class SymmetricConvBNPReLU(SymmetricConvPReLU):
    def __init__(self, in_ch, out_ch, ksize, stride=1, pad=1, dilation=1, nobias=False, upsample=None):
        super(SymmetricConvBNPReLU, self).__init__(in_ch, out_ch, ksize, stride, pad, dilation, nobias, upsample)
        self.add_link("bn", L.BatchNormalization(out_ch, eps=1e-5, decay=0.95))

    def __call__(self, x):
        h = self.conv2(self.conv1(x))
        return self.prelu(self.bn(h))

    def predict(self, x):
        h = self.conv2(self.conv1(x))
        return self.prelu(self.bn(h))

class InitialBlock(chainer.Chain):
    def __init__(self, in_ch=3, out_ch=13, ksize=3, stride=2, pad=1, nobias=False, psize=3, use_bn=True, use_prelu=False):
        super(InitialBlock, self).__init__()
        with self.init_scope():
            this_mod = sys.modules[__name__]
            conv_type = "ConvBN" if use_bn else "Conv"
            activation = "PReLU" if use_prelu else "ReLU"
            conv_type = conv_type + activation
            ConvBlock = getattr(this_mod, conv_type)
            self.conv = ConvBlock(in_ch, out_ch, ksize, stride, pad, nobias=nobias)
        self.psize = psize
        self.ppad = int((psize - 1) / 2)

    def __call__(self, x):
        x = self.conv(x)
        return F.max_pooling_2d(x, self.psize, 2)

    def predict(self, x):
        x = self.conv(x)
        return F.max_pooling_2d(x, self.psize, 2, self.ppad)

class ResBacisBlock(chainer.Chain):
    def __init__(self, in_ch=3, out_ch=13, downsample=False, use_bn=True):
        super(ResBacisBlock, self).__init__()
        self.downsample = downsample
        with self.init_scope():
            this_mod = sys.modules[__name__]
            conv_type = "ConvBN" if use_bn else "Conv"
            ConvBlock = getattr(this_mod, conv_type + "ReLU")
            stride = 2 if self.downsample else 1
            self.conv1 = ConvBlock(in_ch, out_ch, 3, stride, 1, nobias=True)
            ConvBlock = getattr(this_mod, conv_type)
            self.conv2 = ConvBlock(out_ch, out_ch, 3, 1, 1, nobias=True)
            if self.downsample:
                self.conv3 = ConvBlock(in_ch, out_ch, 1, 2, 0, nobias=True)

    def __call__(self, x):
        h1 = self.conv2(self.conv1(x))
        if self.downsample:
            return F.relu(h1 + self.conv3(x))
        else:
            return F.relu(h1 + x)

    def predict(self, x):
        h1 = self.conv2(self.conv1(x))
        if self.downsample:
            return F.relu(h1 + self.conv3(x))
        else:
            return F.relu(h1 + x)

class ResBlock18(chainer.Chain):
    def __init__(self, use_bn=True, train=True,alpha=1):
        super(ResBlock18, self).__init__()
        self.alpha=alpha
        self.train = train
        with self.init_scope():
            self.block1_1 = ResBacisBlock(64//self.alpha, 64//self.alpha, use_bn=use_bn)
            self.block1_2 = ResBacisBlock(64//self.alpha, 64//self.alpha, use_bn=use_bn)
            self.block2_1 = ResBacisBlock(64//self.alpha, 128//self.alpha, use_bn=use_bn, downsample=True)
            self.block2_2 = ResBacisBlock(128//self.alpha, 128//self.alpha, use_bn=use_bn)
            self.block3_1 = ResBacisBlock(128//self.alpha, 256//self.alpha, use_bn=use_bn, downsample=True)
            self.block3_2 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block4_1 = ResBacisBlock(256//self.alpha, 512//self.alpha, use_bn=use_bn, downsample=True)
            self.block4_2 = ResBacisBlock(512//self.alpha, 512//self.alpha, use_bn=use_bn)

    def pytorch2chainer(path):
        pass

    def __call__(self, x):
        with chainer.using_config('train', self.train):
            h1 = self.block1_2(self.block1_1(x))
            h2 = self.block2_2(self.block2_1(h1))
            h3 = self.block3_2(self.block3_1(h2))
            h4 = self.block4_2(self.block4_1(h3))
            return h1, h2, h3, h4

    def predict(self, x):
        x = self.block1_2(self.block1_1(x))
        x = self.block2_2(self.block2_1(x))
        x = self.block3_2(self.block3_1(x))
        return self.block4_2(self.block4_1(x))

class ResBlock34(chainer.Chain):
    def __init__(self, use_bn=True, train=True,alpha=1):
        super(ResBlock34, self).__init__()
        self.alpha=alpha
        self.train = train
        with self.init_scope():
            self.block1_1 = ResBacisBlock(64//self.alpha, 64//self.alpha, use_bn=use_bn)
            self.block1_2 = ResBacisBlock(64//self.alpha, 64//self.alpha, use_bn=use_bn)
            self.block1_3 = ResBacisBlock(64//self.alpha, 64//self.alpha, use_bn=use_bn)
            self.block2_1 = ResBacisBlock(64//self.alpha, 128//self.alpha, use_bn=use_bn, downsample=True)
            self.block2_2 = ResBacisBlock(128//self.alpha, 128//self.alpha, use_bn=use_bn)
            self.block2_3 = ResBacisBlock(128//self.alpha, 128//self.alpha, use_bn=use_bn)
            self.block2_4 = ResBacisBlock(128//self.alpha, 128//self.alpha, use_bn=use_bn)
            self.block3_1 = ResBacisBlock(128//self.alpha, 256//self.alpha, use_bn=use_bn, downsample=True)
            self.block3_2 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block3_3 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block3_4 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block3_5 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block3_6 = ResBacisBlock(256//self.alpha, 256//self.alpha, use_bn=use_bn)
            self.block4_1 = ResBacisBlock(256//self.alpha, 512//self.alpha, use_bn=use_bn, downsample=True)
            self.block4_2 = ResBacisBlock(512//self.alpha, 512//self.alpha, use_bn=use_bn)
            self.block4_3 = ResBacisBlock(512//self.alpha, 512//self.alpha, use_bn=use_bn)

    def pytorch2chainer(path):
        pass

    def __call__(self, x):
        with chainer.using_config('train', self.train):
            h1 = self.block1_2(self.block1_1(x))
            h2 = self.block2_2(self.block2_1(h1))
            h3 = self.block3_2(self.block3_1(h2))
            h4 = self.block4_2(self.block4_1(h3))
            return h1, h2, h3, h4

    def predict(self, x):
        x = self.block1_2(self.block1_1(x))
        x = self.block2_2(self.block2_1(x))
        x = self.block3_2(self.block3_1(x))
        return self.block4_2(self.block4_1(x))

class DecoderBlock(chainer.Chain):
    def __init__(self, in_ch=3, mid_ch=0, out_ch=13, ksize=3, stride=1, pad=1, residual=False, nobias=False, outsize=None, upsample=False, use_bn=True, use_prelu=False):
        super(DecoderBlock, self).__init__()
        self.residual = residual
        mid_ch = int(in_ch / 4)
        with self.init_scope():
            this_mod = sys.modules[__name__]
            conv_type = "ConvBN" if use_bn else "Conv"
            activation = "PReLU" if use_prelu else "ReLU"
            ConvBlock = getattr(this_mod, conv_type + activation)
            self.conv1 = ConvBlock(in_ch, mid_ch, 1, 1, 0, nobias=True)
            conv_type2 = conv_type + activation
            ConvBlock = getattr(this_mod, conv_type2)
            self.conv2 = ConvBlock(mid_ch, mid_ch, ksize, stride, pad, nobias=False, upsample=upsample, outsize=None) # outsize)
            ConvBlock = getattr(this_mod, conv_type)
            self.conv3 = ConvBlock(mid_ch, out_ch, 1, 1, 0, nobias=True)

    def __call__(self, x):
        h1 = self.conv1(x)
        h1 = self.conv2(h1)
        h1 = self.conv3(h1)
        if self.residual:
            return F.relu(h1 + x)
        return F.relu(h1)

    def predict(self, x):
        h1 = self.conv1(x)
        h1 = self.conv2(h1)
        h1 = self.conv3(h1)
        if self.residual:
            return F.relu(h1 + x)
        return F.relu(h1)

class FullConv(chainer.Chain):
    def __init__(self, in_ch=3, mid_ch=0, out_ch=13, ksize=3, stride=1, pad=1):
        super(FullConv, self).__init__()
        with self.init_scope():
            self.deconv = L.Deconvolution2D(in_ch, out_ch, ksize, stride, pad)

    def __call__(self, x):
        return self.deconv(x)

    def predict(self, x):
        return self.deconv(x)

class LinkNetBasic(chainer.Chain):
    def __init__(self,n_layers=18, n_class = None,image_size=512,alpha=1):
        super(LinkNetBasic, self).__init__()
        self.alpha=alpha
        self.size = (image_size,image_size)
        with self.init_scope():
            self.initial_block = InitialBlock(in_ch=3, out_ch=64//self.alpha, ksize=7, stride=2, pad=3, nobias=True, psize=3, use_bn=True, use_prelu=False)
            
            if n_layers==18:
                self.resblock = ResBlock18(use_bn=True, train=True,alpha=self.alpha)
            else:
                self.resblock = ResBlock34(use_bn=True, train=True,alpha=self.alpha)
            
            self.decoder4 = DecoderBlock(in_ch=512//self.alpha, mid_ch=0, out_ch=256//self.alpha, ksize=2, stride=2, pad=0, residual=False, nobias=False, outsize=(self.size[0]/(2**5), self.size[1]/(2**5)), upsample=1, use_bn=True, use_prelu=False)

            self.decoder3 = DecoderBlock(in_ch=256//self.alpha, mid_ch=0, out_ch=128//self.alpha, ksize=2, stride=2, pad=0, residual=False, nobias=False, outsize=(self.size[0]/(2**4), self.size[1]/(2**4)), upsample=1, use_bn=True, use_prelu=False)

            self.decoder2 = DecoderBlock(in_ch=128//self.alpha, mid_ch=0, out_ch=64//self.alpha, ksize=2, stride=2, pad=0, residual=False, nobias=False, outsize=(self.size[0]/(2**3), self.size[1]/(2**3)), upsample=1, use_bn=True, use_prelu=False)

            self.decoder1 = DecoderBlock(in_ch=64//self.alpha, mid_ch=0, out_ch=64//self.alpha, ksize=3, stride=1, pad=1, residual=False, nobias=False, outsize= (self.size[0]/(2**2), self.size[1]/(2**2)), upsample=False, use_bn=True, use_prelu=False)

            self.finalblock1 = ConvBNReLU(in_ch=64//self.alpha, out_ch=32//self.alpha, ksize=2, stride=2, pad=0, dilation=1, nobias=False, upsample=True, outsize=None)

            self.finalblock2 = ConvBNReLU(in_ch=32//self.alpha, out_ch=32//self.alpha, ksize=3, stride=1, pad=1, dilation=1, nobias=False, upsample=False, outsize=None)

            self.finalblock3 = FullConv(in_ch=32//self.alpha, mid_ch=0, out_ch=n_class, ksize=2, stride=2, pad=0)

    def __call__(self, x):
        x = self.initial_block(x)
        h1, h2, h3, h4 = self.resblock(x)
        x = self.decoder4(h4)
        x += h3
        x = self.decoder3(x)
        x += h2
        x = self.decoder2(x)
        x += h1
        x = self.decoder1(x)
        x = self.finalblock1(x)
        x = self.finalblock2(x)
        x = self.finalblock3(x)
        return x

三.调用方法

model = LinkNetBasic(n_layers=self.layers,n_class = len(self.classes_names),image_size=self.image_size,alpha=self.alpha)
self.model = PixelwiseSoftmaxClassifier(model)
if self.gpu_devices>=0:
    chainer.cuda.get_device_from_id(self.gpu_devices).use()
    self.model.to_gpu()

你可能感兴趣的:(深度学习-chainer,python,网络,深度学习)