mediapipe学习-手势识别windows(2)

前言

前面已经讲过怎么搭建环境了,也简单的讲述了编译 hand_tracking

1:编译 CPU 版本 hand_tracking
目录结构如下
mediapipe学习-手势识别windows(2)_第1张图片

cd mediapipe ####有WORKSPACE 目录 这里PYTHON目录 F:/softinstalldir/Python/Python38/python.exe

bazel build -c opt --define MEDIAPIPE_DISABLE_GPU=1 --action_env PYTHON_BIN_PATH=“F:/softinstalldir/Python/Python38/python.exe” mediapipe/examples/desktop/hand_tracking:hand_tracking_cpu
mediapipe学习-手势识别windows(2)_第2张图片

注意找不到得包 ,自行下载 参考 mediapipe学习-安装编译windows(1)

编译速度根据本地机器得CPU 有关,用的老机子 第一次编译了好久(i5 3470) 再有就跟网络有关系 会下载很多包下来

2:修改CODE,增加手势中显示手势的结果打印

// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// An example of sending OpenCV webcam frames into a MediaPipe graph.
#include 
#include  

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/formats/image_frame.h"
#include "mediapipe/framework/formats/image_frame_opencv.h"
#include "mediapipe/framework/port/file_helpers.h"
#include "mediapipe/framework/port/opencv_highgui_inc.h"
#include "mediapipe/framework/port/opencv_imgproc_inc.h"
#include "mediapipe/framework/port/opencv_video_inc.h"
#include "mediapipe/framework/port/parse_text_proto.h"
#include "mediapipe/framework/port/status.h"
#include "mediapipe/framework/formats/location.h"

#include "mediapipe/framework/formats/landmark.pb.h"

#include "hand_tracking_data.h"

constexpr char kInputStream[] = "input_video";
constexpr char kOutputStream[] = "output_video";
constexpr char kWindowName[] = "MediaPipe";

constexpr char kOutputLandmarks[] = "landmarks"; //eh add

int GestureRecognition(const std::vector<PoseInfo>& single_hand_joint_vector);  //eh add
float Vector2DAngle(const Vector2D& vec1, const Vector2D& vec2);  //eh add
std::string GetGestureResult(int result);  //eh add
 

ABSL_FLAG(std::string, calculator_graph_config_file, "",
          "Name of file containing text format CalculatorGraphConfig proto.");
ABSL_FLAG(std::string, input_video_path, "",
          "Full path of video to load. "
          "If not provided, attempt to use a webcam.");
ABSL_FLAG(std::string, output_video_path, "",
          "Full path of where to save result (.mp4 only). "
          "If not provided, show result in a window.");

absl::Status RunMPPGraph() {
  std::string calculator_graph_config_contents;
  MP_RETURN_IF_ERROR(mediapipe::file::GetContents(
      absl::GetFlag(FLAGS_calculator_graph_config_file),
      &calculator_graph_config_contents));
  LOG(INFO) << "Get calculator graph config contents: "
            << calculator_graph_config_contents;
  mediapipe::CalculatorGraphConfig config =
      mediapipe::ParseTextProtoOrDie<mediapipe::CalculatorGraphConfig>(
          calculator_graph_config_contents);

  LOG(INFO) << "Initialize the calculator graph.[eh_1]";
  mediapipe::CalculatorGraph graph;
  MP_RETURN_IF_ERROR(graph.Initialize(config));

  LOG(INFO) << "Initialize the camera or load the video.";
  cv::VideoCapture capture;
  const bool load_video = !absl::GetFlag(FLAGS_input_video_path).empty();
  if (load_video) {
    capture.open(absl::GetFlag(FLAGS_input_video_path));
  } else {
    capture.open(0);
  }
  RET_CHECK(capture.isOpened());

  cv::VideoWriter writer;
  const bool save_video = !absl::GetFlag(FLAGS_output_video_path).empty();
  if (!save_video) {
    cv::namedWindow(kWindowName, /*flags=WINDOW_AUTOSIZE*/ 1);
#if (CV_MAJOR_VERSION >= 3) && (CV_MINOR_VERSION >= 2)
    capture.set(cv::CAP_PROP_FRAME_WIDTH, 640);
    capture.set(cv::CAP_PROP_FRAME_HEIGHT, 480);
    capture.set(cv::CAP_PROP_FPS, 30);
#endif
  }

  LOG(INFO) << "Start running the calculator graph.";
  ASSIGN_OR_RETURN(mediapipe::OutputStreamPoller poller,
                   graph.AddOutputStreamPoller(kOutputStream));
  
  // 添加landmarks输出流
  mediapipe::StatusOrPoller sop_landmark = graph.AddOutputStreamPoller(kOutputLandmarks);
  assert(sop_landmark.ok());
  auto m_pPoller_landmarks = std::make_unique<mediapipe::OutputStreamPoller>(std::move(sop_landmark.value()));
  ///

  MP_RETURN_IF_ERROR(graph.StartRun({}));

  LOG(INFO) << "Start grabbing and processing frames.";
  int  nframe = 0;
  bool grab_frames = true;
  while (grab_frames) {
      ++nframe;
    // Capture opencv camera or video frame.
    cv::Mat camera_frame_raw;
    capture >> camera_frame_raw;
    if (camera_frame_raw.empty()) {
      if (!load_video) {
        LOG(INFO) << "Ignore empty frames from camera.";
        continue;
      }
      LOG(INFO) << "Empty frame, end of video reached.";
      break;
    }
    cv::Mat camera_frame;
    cv::cvtColor(camera_frame_raw, camera_frame, cv::COLOR_BGR2RGB);

    // 水平翻转
    cv::flip(camera_frame, camera_frame, /*flipcode=HORIZONTAL*/ 1);

    if (!load_video) {
      cv::flip(camera_frame, camera_frame, /*flipcode=HORIZONTAL*/ 1);
    }

    // Wrap Mat into an ImageFrame.
    auto input_frame = absl::make_unique<mediapipe::ImageFrame>(
        mediapipe::ImageFormat::SRGB, camera_frame.cols, camera_frame.rows,
        mediapipe::ImageFrame::kDefaultAlignmentBoundary);
    cv::Mat input_frame_mat = mediapipe::formats::MatView(input_frame.get());
    camera_frame.copyTo(input_frame_mat);

    // Send image packet into the graph.
    size_t frame_timestamp_us =
        (double)cv::getTickCount() / (double)cv::getTickFrequency() * 1e6;
    MP_RETURN_IF_ERROR(graph.AddPacketToInputStream(
        kInputStream, mediapipe::Adopt(input_frame.release())
                          .At(mediapipe::Timestamp(frame_timestamp_us))));

    // Get the graph result packet, or stop if that fails.
    mediapipe::Packet packet;
    if (!poller.Next(&packet)) break;
    auto& output_frame = packet.Get<mediapipe::ImageFrame>();

    
    //eh add
	//std::cout << "packet_landmarks:"<
    mediapipe::Packet packet_landmarks;
    if (m_pPoller_landmarks->QueueSize() > 0)
    {
        if (m_pPoller_landmarks->Next(&packet_landmarks)) {
          //  std::vector output_landmarks = packet_landmarks.Get>();
         //   for (int m = 0; m < output_landmarks.size(); ++m) {
         //       LOG(INFO) << "output_landmarks.size." << output_landmarks.size();
          //      break;
         //   }
            std::vector<mediapipe::NormalizedLandmarkList> output_landmarks = packet_landmarks.Get<std::vector<mediapipe::NormalizedLandmarkList>>();
            for (int m = 0; m < output_landmarks.size(); ++m) {
              //  LOG(INFO) << "output_landmarks.size."<< output_landmarks.size();  //1 表示一只手  2 表示2只手

                std::vector<PoseInfo> singleHandGestureInfo;
                singleHandGestureInfo.clear();
               // break;
                mediapipe::NormalizedLandmarkList single_hand_NormalizedLandmarkList = output_landmarks[m];
                for (int i = 0; i < single_hand_NormalizedLandmarkList.landmark_size(); ++i)
                {
                    PoseInfo info;
                    const mediapipe::NormalizedLandmark landmark = single_hand_NormalizedLandmarkList.landmark(i);
                    info.x = landmark.x() * camera_frame.cols;
                    info.y = landmark.y() * camera_frame.rows;
                    singleHandGestureInfo.push_back(info);
                }

                int handres = GestureRecognition(singleHandGestureInfo);
               // LOG(INFO) << "[" << m << "] " << GetGestureResult(handres);
				std::cout <<"["<< nframe<< " hand[" << m << "] " << GetGestureResult(handres) <<std::endl;
            }
        }
    }else{
		 LOG(INFO) << "output_landmarks.size  is zero.";
	}
    

    // Convert back to opencv for display or saving.
    cv::Mat output_frame_mat = mediapipe::formats::MatView(&output_frame);
    cv::cvtColor(output_frame_mat, output_frame_mat, cv::COLOR_RGB2BGR);
    if (save_video) {
      if (!writer.isOpened()) {
        LOG(INFO) << "Prepare video writer.";
        writer.open(absl::GetFlag(FLAGS_output_video_path),
                    mediapipe::fourcc('a', 'v', 'c', '1'),  // .mp4
                    capture.get(cv::CAP_PROP_FPS), output_frame_mat.size());
        RET_CHECK(writer.isOpened());
      }
      writer.write(output_frame_mat);
    } else {
      cv::imshow(kWindowName, output_frame_mat);
      // Press any key to exit.
      const int pressed_key = cv::waitKey(5);
      if (pressed_key >= 0 && pressed_key != 255) grab_frames = false;
    }
  }

  LOG(INFO) << "Shutting down.";
  if (writer.isOpened()) writer.release();
  MP_RETURN_IF_ERROR(graph.CloseInputStream(kInputStream));
  return graph.WaitUntilDone();
}

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);
  absl::ParseCommandLine(argc, argv);
  absl::Status run_status = RunMPPGraph();
  if (!run_status.ok()) {
    LOG(ERROR) << "Failed to run the graph: " << run_status.message();
    return EXIT_FAILURE;
  } else {
    LOG(INFO) << "Success!";
  }
  return EXIT_SUCCESS;
}


//手势识别
int GestureRecognition(const std::vector<PoseInfo>& single_hand_joint_vector)
{
    if (single_hand_joint_vector.size() != 21)
        return -1;

    // 大拇指角度
    Vector2D thumb_vec1;
    thumb_vec1.x = single_hand_joint_vector[0].x - single_hand_joint_vector[2].x;
    thumb_vec1.y = single_hand_joint_vector[0].y - single_hand_joint_vector[2].y;

    Vector2D thumb_vec2;
    thumb_vec2.x = single_hand_joint_vector[3].x - single_hand_joint_vector[4].x;
    thumb_vec2.y = single_hand_joint_vector[3].y - single_hand_joint_vector[4].y;

    float thumb_angle = Vector2DAngle(thumb_vec1, thumb_vec2);
    //std::cout << "thumb_angle = " << thumb_angle << std::endl;
    //std::cout << "thumb.y = " << single_hand_joint_vector[0].y << std::endl;


    // 食指角度
    Vector2D index_vec1;
    index_vec1.x = single_hand_joint_vector[0].x - single_hand_joint_vector[6].x;
    index_vec1.y = single_hand_joint_vector[0].y - single_hand_joint_vector[6].y;

    Vector2D index_vec2;
    index_vec2.x = single_hand_joint_vector[7].x - single_hand_joint_vector[8].x;
    index_vec2.y = single_hand_joint_vector[7].y - single_hand_joint_vector[8].y;

    float index_angle = Vector2DAngle(index_vec1, index_vec2);
    //std::cout << "index_angle = " << index_angle << std::endl;


    // 中指角度
    Vector2D middle_vec1;
    middle_vec1.x = single_hand_joint_vector[0].x - single_hand_joint_vector[10].x;
    middle_vec1.y = single_hand_joint_vector[0].y - single_hand_joint_vector[10].y;

    Vector2D middle_vec2;
    middle_vec2.x = single_hand_joint_vector[11].x - single_hand_joint_vector[12].x;
    middle_vec2.y = single_hand_joint_vector[11].y - single_hand_joint_vector[12].y;

    float middle_angle = Vector2DAngle(middle_vec1, middle_vec2);
    //std::cout << "middle_angle = " << middle_angle << std::endl;


    // 无名指角度
    Vector2D ring_vec1;
    ring_vec1.x = single_hand_joint_vector[0].x - single_hand_joint_vector[14].x;
    ring_vec1.y = single_hand_joint_vector[0].y - single_hand_joint_vector[14].y;

    Vector2D ring_vec2;
    ring_vec2.x = single_hand_joint_vector[15].x - single_hand_joint_vector[16].x;
    ring_vec2.y = single_hand_joint_vector[15].y - single_hand_joint_vector[16].y;

    float ring_angle = Vector2DAngle(ring_vec1, ring_vec2);
    //std::cout << "ring_angle = " << ring_angle << std::endl;

    // 小拇指角度
    Vector2D pink_vec1;
    pink_vec1.x = single_hand_joint_vector[0].x - single_hand_joint_vector[18].x;
    pink_vec1.y = single_hand_joint_vector[0].y - single_hand_joint_vector[18].y;

    Vector2D pink_vec2;
    pink_vec2.x = single_hand_joint_vector[19].x - single_hand_joint_vector[20].x;
    pink_vec2.y = single_hand_joint_vector[19].y - single_hand_joint_vector[20].y;

    float pink_angle = Vector2DAngle(pink_vec1, pink_vec2);
    //std::cout << "pink_angle = " << pink_angle << std::endl;


    // 根据角度判断手势
    float angle_threshold = 65;
    float thumb_angle_threshold = 40;

    int result = -1;
    if ((thumb_angle > thumb_angle_threshold) && (index_angle > angle_threshold) && (middle_angle > angle_threshold) && (ring_angle > angle_threshold) && (pink_angle > angle_threshold))
        result = Gesture::Fist;
    else if ((thumb_angle > 5) && (index_angle < angle_threshold) && (middle_angle > angle_threshold) && (ring_angle > angle_threshold) && (pink_angle > angle_threshold))
        result = Gesture::One;
    else if ((thumb_angle > thumb_angle_threshold) && (index_angle < angle_threshold) && (middle_angle < angle_threshold) && (ring_angle > angle_threshold) && (pink_angle > angle_threshold))
        result = Gesture::Two;
    else if ((thumb_angle > thumb_angle_threshold) && (index_angle < angle_threshold) && (middle_angle < angle_threshold) && (ring_angle < angle_threshold) && (pink_angle > angle_threshold))
        result = Gesture::Three;
    else if ((thumb_angle > thumb_angle_threshold) && (index_angle < angle_threshold) && (middle_angle < angle_threshold) && (ring_angle < angle_threshold) && (pink_angle < angle_threshold))
        result = Gesture::Four;
    else if ((thumb_angle < thumb_angle_threshold) && (index_angle < angle_threshold) && (middle_angle < angle_threshold) && (ring_angle < angle_threshold) && (pink_angle < angle_threshold))
        result = Gesture::Five;
    else if ((thumb_angle < thumb_angle_threshold) && (index_angle > angle_threshold) && (middle_angle > angle_threshold) && (ring_angle > angle_threshold) && (pink_angle < angle_threshold))
        result = Gesture::Six;
    else if ((thumb_angle < thumb_angle_threshold) && (index_angle > angle_threshold) && (middle_angle > angle_threshold) && (ring_angle > angle_threshold) && (pink_angle > angle_threshold))
        result = Gesture::ThumbUp;
    else if ((thumb_angle > 5) && (index_angle > angle_threshold) && (middle_angle < angle_threshold) && (ring_angle < angle_threshold) && (pink_angle < angle_threshold))
        result = Gesture::Ok;
    else
        result = -1;

    return result;
}

float Vector2DAngle(const Vector2D& vec1, const Vector2D& vec2)
{
    double PI = 3.141592653;
    float t = (vec1.x * vec2.x + vec1.y * vec2.y) / (sqrt(pow(vec1.x, 2) + pow(vec1.y, 2)) * sqrt(pow(vec2.x, 2) + pow(vec2.y, 2)));
    float angle = acos(t) * (180 / PI);
    return angle;
}

std::string GetGestureResult(int result)
{
    std::string result_str = "无";
    switch (result)
    {
    case 1:
        result_str = "One";
        break;
    case 2:
        result_str = "Two";
        break;
    case 3:
        result_str = "Three";
        break;
    case 4:
        result_str = "Four";
        break;
    case 5:
        result_str = "Five";
        break;
    case 6:
        result_str = "Six";
        break;
    case 7:
        result_str = "ThumbUp";
        break;
    case 8:
        result_str = "Ok";
        break;
    case 9:
        result_str = "Fist";
        break;

    default:
        break;
    }

    return result_str;
}

hand_tracking_data.h 这个文件参考了别人的

#ifndef HANDS_TRACKING_DATA_H
#define HANDS_TRACKING_DATA_H

struct PoseInfo {
	float x;
	float y;
};

typedef PoseInfo Point2D;
typedef PoseInfo Vector2D;


struct GestureRecognitionResult
{
	int m_Gesture_Recognition_Result[2] = {-1,-1};
	int m_HandUp_HandDown_Detect_Result[2] = {-1,-1};
};

enum Gesture
{
	NoGesture = -1,
	One = 1,
	Two = 2,
	Three = 3,
	Four = 4,
	Five = 5,
	Six = 6,
	ThumbUp = 7,
	Ok = 8,
	Fist = 9
};

#endif // !HANDS_TRACKING_DATA_H

修改BUILD

cc_library(
    name = "demo_run_graph_main",
    srcs = ["demo_run_graph_main.cc","hand_tracking_data.h"], #这里增加 hand_tracking_data.h
    deps = [
		"//mediapipe/framework/formats:landmark_cc_proto",  #这句是增加的
        "//mediapipe/framework:calculator_framework",
        .............................................
        .............................................
        ],
        )

3:运行测试
mediapipe学习-手势识别windows(2)_第3张图片

4: 下章讲述android版本 手势识别 实现

你可能感兴趣的:(mediapipe学习,学习,opencv,python)