从零开始 HRNet_网络的结构和源码

(0)摘要

 

# 本文重点剖析一下 HRNet 的完整网络结构和网络模块,对每一个网络模块的源码进行分析。同时介绍一下 nn.ModuleList() 。

# 内容

(1)HRNet 源码

(2)网络结构图


# 乱花渐欲迷人眼

(1)HRNet 的源码

# (1)HRNet 是由三个基础块构成的,分别是 Bottleneck、BasicBlock、HighResolutionModule。其中,blocks_dict 其实就是 Bottleneck 和 BasicBlock 。另外, HighResolution 是由 BasicBlock 构成的。有了这个基础,我们分别结合源码,讲解这三个模块。


# (2)Bottleneck 模块。

                1)源码如下,看看就行了,基本结合图来看就是了。

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion,
                                  momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

                2)Bottleneck 网络模型图,结合源码可以看得很清楚。

从零开始 HRNet_网络的结构和源码_第1张图片


# (3)BasicBlock 模块。

                1)网络源码。

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

                2)BasicBlock 模块的网络模型图

从零开始 HRNet_网络的结构和源码_第2张图片


# (4)HighResolutionModule 网络模块。

                1)讲这个模块之前,我们要先讲一下 transition1 和 transition 2 还有 transition 3的模块,分别以 transition1 对应 stage 2、transition 2 对应 stage 3、transition 3 对应 stage 4 来讲解,具体的代码不讲了。下面是 transition 1 的网络模块。

从零开始 HRNet_网络的结构和源码_第3张图片

        

                对应的 stage 2 模块,同时也引出了第一个属于 Stage2 的 HighResolutionModule 模块。

从零开始 HRNet_网络的结构和源码_第4张图片

                2)下面是 transition 2 的网络模块。

从零开始 HRNet_网络的结构和源码_第5张图片

             

                 针对于 stage3 阶段的 HighResolutionModule 模块,根据研读源码的结果,stage3 阶段一共有 4 个 HighResolutionModule 模块。

从零开始 HRNet_网络的结构和源码_第6张图片

                branch 模块的结构图。

从零开始 HRNet_网络的结构和源码_第7张图片

               

                结合上面两个的结果,我们可以看到实际的 HighResolutionModule 模块。

从零开始 HRNet_网络的结构和源码_第8张图片

             

                于是根据上面的结果,就有了正儿八经的 stage 3 的网络结构图。

从零开始 HRNet_网络的结构和源码_第9张图片

                3)下面是 transition3 部分的结构。

从零开始 HRNet_网络的结构和源码_第10张图片

                 与 stage3 阶段的 HighResolutionModule 模块类似,stage4 的其实就是多一个分支进行尺度融合而已。当然,源码中 stage4 只有三个 HighResolutionModule 模块。

从零开始 HRNet_网络的结构和源码_第11张图片

                stage 4 阶段的网络模块和最后的 final_layers 层的网络结构图。这也就是最后阶段的网络结构。

从零开始 HRNet_网络的结构和源码_第12张图片

                4)HighResolutionModule 源码。

class HighResolutionModule(nn.Module):
    def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
                 num_channels, fuse_method, multi_scale_output=True):
        super(HighResolutionModule, self).__init__()
        self._check_branches(
            num_branches, blocks, num_blocks, num_inchannels, num_channels)

        self.num_inchannels = num_inchannels
        self.fuse_method = fuse_method
        self.num_branches = num_branches

        self.multi_scale_output = multi_scale_output

        self.branches = self._make_branches(
            num_branches, blocks, num_blocks, num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(True)

    def _check_branches(self, num_branches, blocks, num_blocks,
                        num_inchannels, num_channels):
        if num_branches != len(num_blocks):
            error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
                num_branches, len(num_blocks))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_channels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
                num_branches, len(num_channels))
            logger.error(error_msg)
            raise ValueError(error_msg)

        if num_branches != len(num_inchannels):
            error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
                num_branches, len(num_inchannels))
            logger.error(error_msg)
            raise ValueError(error_msg)

    def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
                         stride=1):
        downsample = None
        if stride != 1 or \
           self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.num_inchannels[branch_index],
                    num_channels[branch_index] * block.expansion,
                    kernel_size=1, stride=stride, bias=False
                ),
                nn.BatchNorm2d(
                    num_channels[branch_index] * block.expansion,
                    momentum=BN_MOMENTUM
                ),
            )

        layers = []
        layers.append(
            block(
                self.num_inchannels[branch_index],
                num_channels[branch_index],
                stride,
                downsample
            )
        )
        self.num_inchannels[branch_index] = \
            num_channels[branch_index] * block.expansion
        for i in range(1, num_blocks[branch_index]):
            layers.append(
                block(
                    self.num_inchannels[branch_index],
                    num_channels[branch_index]
                )
            )

        return nn.Sequential(*layers)

    def _make_branches(self, num_branches, block, num_blocks, num_channels):
        branches = []

        for i in range(num_branches):
            branches.append(
                self._make_one_branch(i, block, num_blocks, num_channels)
            )

        return nn.ModuleList(branches)

    def _make_fuse_layers(self):
        if self.num_branches == 1:
            return None

        num_branches = self.num_branches
        num_inchannels = self.num_inchannels
        fuse_layers = []
        for i in range(num_branches if self.multi_scale_output else 1):
            fuse_layer = []
            for j in range(num_branches):
                if j > i:
                    fuse_layer.append(
                        nn.Sequential(
                            nn.Conv2d(
                                num_inchannels[j],
                                num_inchannels[i],
                                1, 1, 0, bias=False
                            ),
                            nn.BatchNorm2d(num_inchannels[i]),
                            nn.Upsample(scale_factor=2**(j-i), mode='nearest')
                        )
                    )
                elif j == i:
                    fuse_layer.append(None)
                else:
                    conv3x3s = []
                    for k in range(i-j):
                        if k == i - j - 1:
                            num_outchannels_conv3x3 = num_inchannels[i]
                            conv3x3s.append(
                                nn.Sequential(
                                    nn.Conv2d(
                                        num_inchannels[j],
                                        num_outchannels_conv3x3,
                                        3, 2, 1, bias=False
                                    ),
                                    nn.BatchNorm2d(num_outchannels_conv3x3)
                                )
                            )
                        else:
                            num_outchannels_conv3x3 = num_inchannels[j]
                            conv3x3s.append(
                                nn.Sequential(
                                    nn.Conv2d(
                                        num_inchannels[j],
                                        num_outchannels_conv3x3,
                                        3, 2, 1, bias=False
                                    ),
                                    nn.BatchNorm2d(num_outchannels_conv3x3),
                                    nn.ReLU(True)
                                )
                            )
                    fuse_layer.append(nn.Sequential(*conv3x3s))
            fuse_layers.append(nn.ModuleList(fuse_layer))

        return nn.ModuleList(fuse_layers)

    def get_num_inchannels(self):
        return self.num_inchannels

    def forward(self, x):
        if self.num_branches == 1:
            return [self.branches[0](x[0])]
        # (2)   self.num_branches = 2
        # (3)   self.num_branches = 3
        # (4)   self.num_branches = 4
        for i in range(self.num_branches):
            # (2)   i = 0, 1
            #       self.branches[0](x[0])
            #       self.branches[1](x[1])

            # (3)   i = 0, 1, 2
            #       x[0] = self.branches[0](x[0])
            #       x[1] = self.branches[1](x[1])
            #       x[2] = self.branches[2](x[2])

            # (4)   i = 0, 1, 2, 3
            #       x[0] = self.branches[0](x[0])
            #       x[1] = self.branches[1](x[1])
            #       x[2] = self.branches[2](x[2])
            #       x[3] = self.branches[3](x[3])
            x[i] = self.branches[i](x[i])

        x_fuse = []
        # (2)   self.fuse_layers = 2
        # (3)   self.fuse_layers = 3
        # (4)   self.fuse_layers = 4
        for i in range(len(self.fuse_layers)):
            # (2)   i = 0, 1
            #       i = 0, y = x[0]
            #       i = 1, y = self.fuse_layers[1][0](x[0])
            #
            # (3)   i = 0, 1, 2
            #       i = 0, y = x[0]
            #       i = 1, y = self.fuse_layers[1][0](x[0])
            #       i = 2, y = self.fuse_layers[2][0](x[0])
            #
            # (4)   i = 0, 1, 2, 3
            #       i = 0, y = x[0]
            #       i = 1, y = self.fuse_layers[1][0](x[0])
            #       i = 2, y = self.fuse_layers[2][0](x[0])
            #       i = 3, y = self.fuse_layers[3][0](x[0])
            y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
            # (2)   j = 1
            #
            # (3)   i = 0, j = 1, 2
            #       i = 1, j = 1, 2
            #       i = 2, j = 1, 2
            #
            # (4)   i = 0, j = 1, 2, 3
            #       i = 1, j = 1, 2, 3
            #       i = 2, j = 1, 2, 3
            for j in range(1, self.num_branches):
                # (2)   i = 1 走这个
                #
                # (3)   i = 1, j = 1 走这个
                #       i = 2, j = 2 走这个
                #
                # (4)   i = 1, j = 1 走这个
                #       i = 2, j = 2 走这个
                #       i = 3, j = 3 走这个
                if i == j:
                    # (2)  i=1, j=1, y = self.fuse_layers[1][0](x[0]) + x[1]
                    #
                    # (3)  i=1, j=1, y = self.fuse_layers[1][0](x[0]) + x[1]
                    #      i=2, j=2, y = {self.fuse_layers[2][0](x[0]) + self.fuse_layers[2][1](x[1])}2,1 + x[2]
                    #
                    # (4)  i=1, j=1, y = self.fuse_layers[1][0](x[0]) + x[1]
                    #      i=2, j=2, y = {self.fuse_layers[2][0](x[0]) + self.fuse_layers[2][1](x[1])}2,1 + x[2]
                    #      i=3, j=3, y = {{self.fuse_layers[3][0](x[0]) + self.fuse_layers[3][1](x[1])}3,1 + self.fuse_layers[3][2](x[2])}3,3 + x[3]
                    y = y + x[j]

                # (2)   i = 0 走这个
                #
                # (3)   i = 0, j = 1 走这个
                #       i = 0, j = 2 走这个
                #       i = 1, j = 2 走这个
                #       i = 2, j = 1 走这个
                #
                # (4)   i = 0, j = 1 走这个
                #       i = 0, j = 2 走这个
                #       i = 0, j = 3 走这个
                #       i = 1, j = 2 走这个
                #       i = 1, j = 3 走这个
                #       i = 2, j = 1 走这个
                #       i = 2, j = 3 走这个
                #       i = 3, j = 1 走这个
                #       i = 3, j = 2 走这个
                else:
                    # (2) y = x[0] + self.fuse_layers[0][1](x[1])
                    #
                    # (3) i=0, j=1, y = x[0] + self.fuse_layers[0][1](x[1])
                    #     i=0, j=2, y = {x[0] + self.fuse_layers[0][1](x[1])}0,1 + self.fuse_layers[0][2](x[2])
                    #     i=1, j=2, y = {self.fuse_layers[1][0](x[0]) + x[1]}1,1 + self.fuse_layers[1][2](x[2])
                    #     i=2, j=1, y = self.fuse_layers[2][0](x[0]) + self.fuse_layers[2][1](x[1])
                    #
                    # (4) i=0, j=1, y = x[0] + self.fuse_layers[0][1](x[1])
                    #     i=0, j=2, y = {x[0] + self.fuse_layers[0][1](x[1])}0,1 + self.fuse_layers[0][2](x[2])
                    #     i=0, j=3, y = {{x[0] + self.fuse_layers[0][1](x[1])}0,1 + self.fuse_layers[0][2](x[2])}0,3 + self.fuse_layers[0][3](x[3])
                    #     i=1, j=2, y = {self.fuse_layers[1][0](x[0]) + x[1]}1,1 + self.fuse_layers[1][2](x[2])
                    #     i=1, j=3, y = {{self.fuse_layers[1][0](x[0]) + x[1]}1,1 + self.fuse_layers[1][2](x[2])}1,3 + self.fuse_layers[1][3](x[3])
                    #     i=2, j=1, y = self.fuse_layers[2][0](x[0]) + self.fuse_layers[2][1](x[1])
                    #     i=3, j=1, y = self.fuse_layers[3][0](x[0]) + self.fuse_layers[3][1](x[1])
                    #     i=3, j=2, y = {self.fuse_layers[3][0](x[0]) + self.fuse_layers[3][1](x[1])}3,1 + self.fuse_layers[3][2](x[2])
                    y = y + self.fuse_layers[i][j](x[j])
            x_fuse.append(self.relu(y))

        return x_fuse


#  欢迎大家批评指正!!!

(2)HRNet 简略图

# 结合源码可以看到,HRNet 的简略图是这样的

从零开始 HRNet_网络的结构和源码_第13张图片


#

你可能感兴趣的:(2D人体姿态估计/图卷积文献,开源)