一、Oracle分析函数简介:
在日常的生产环境中,我们接触得比较多的是OLTP系统(即 Online Transaction Process),这些系统的特点是具备实时要求,或者至少说对响应的时间多长有一定的要求;其次这些系统的业务逻辑一般比较复杂,可能需要经过多次的运 算。比如我们经常接触到的电子商城。
在这些系统之外,还有一种称之为OLAP的系统(即Online Aanalyse Process),这些系统一般用于系统决策使用。通常和数据仓库、数据分析、数据挖掘等概念联系在一起。这些系统的特点是数据量大,对实时响应的要求不 高或者根本不关注这方面的要求,以查询、统计操作为主。
我们来看看下面的几个典型例子:
①查找上一年度各个销售区域排名前10的员工
②按区域查找上一年度订单总额占区域订单总额20%以上的客户
③查找上一年度销售最差的部门所在的区域
④查找上一年度销售最好和最差的产品
我们看看上面的几个例子就可以感觉到这几个查询和我们日常遇到的查询有些不同,具体有:
①需要对同样的数据进行不同级别的聚合操作
②需要在表内将多条数据和同一条数据进行多次的比较
③需要在排序完的结果集上进行额外的过滤操作
二、Oracle分析函数简单实例:
下面我们通过一个实际的例子:按区域查找上一年度订单总额占区域订单总额20%以上的客户,来看看分析函数的应用。
【1】测试环境:
SQL
>
desc
orders_tmp;
Name
Null
? Type
--
--------------------- -------- ----------------
CUST_NBR
NOT
NULL
NUMBER
(
5
)
REGION_ID
NOT
NULL
NUMBER
(
5
)
SALESPERSON_ID
NOT
NULL
NUMBER
(
5
)
YEAR
NOT
NULL
NUMBER
(
4
)
MONTH
NOT
NULL
NUMBER
(
2
)
TOT_ORDERS
NOT
NULL
NUMBER
(
7
)
TOT_SALES
NOT
NULL
NUMBER
(
11
,
2
)
2】测试数据:
SQL
>
select
*
from
orders_tmp;

CUST_NBR REGION_ID SALESPERSON_ID
YEAR
MONTH
TOT_ORDERS TOT_SALES
--
-------- ---------- -------------- ---------- ---------- ---------- ----------
11
7
11
2001
7
2
12204
4
5
4
2001
10
2
37802
7
6
7
2001
2
3
3750
10
6
8
2001
1
2
21691
10
6
7
2001
2
3
42624
15
7
12
2000
5
6
24
12
7
9
2000
6
2
50658
1
5
2
2000
3
2
44494
1
5
1
2000
9
2
74864
2
5
4
2000
3
2
35060
2
5
4
2000
4
4
6454
2
5
1
2000
10
4
35580
4
5
4
2000
12
2
39190

13
rows selected.
【3】测试语句:
SQL
>
select
o.cust_nbr customer,
2
o.region_id region,
3
sum
(o.tot_sales) cust_sales,
4
sum(sum(o.tot_sales)) over(partition by o.region_id) region_sales
5
from
orders_tmp o
6
where
o.
year
=
2001
7
group by o.region_id, o.cust_nbr;

CUSTOMER REGION CUST_SALES REGION_SALES
--
-------- ---------- ---------- ------------
4
5
37802
37802
7
6
3750
68065
10
6
64315
68065
11
7
12204
12204
三、分析函数OVER解析:
请 注意上面的绿色高亮部分,group by的意图很明显:将数据按区域ID,客户进行分组,那么Over这一部分有什么用呢?假如我们只需要统计每个区域每个客户的订单总额,那么我们只需要 group by o.region_id,o.cust_nbr就够了。但我们还想在每一行显示该客户所在区域的订单总额,这一点和前面的不同:需要在前面分组的基础上按 区域累加。很显然group by和sum是无法做到这一点的(因为聚集操作的级别不一样,前者是对一个客户,后者是对一批客户)。
这就是over函数的作用了!它的作用是告诉SQL引擎:按区域对数据进行分区,然后累积每个区域每个客户的订单总额(sum(sum(o.tot_sales)))。
现在我们已经知道2001年度每个客户及其对应区域的订单总额,那么下面就是筛选那些个人订单总额占到区域订单总额20%以上的大客户了.
SQL
>
select
*
2
from
(
select
o.cust_nbr customer,
3
o.region_id region,
4
sum
(o.tot_sales) cust_sales,
5
sum
(
sum
(o.tot_sales))
over
(partition
by
o.region_id) region_sales
6
from
orders_tmp o
7
where
o.
year
=
2001
8
group
by
o.region_id, o.cust_nbr) all_sales
9
where all_sales.cust_sales > all_sales.region_sales * 0.2;

CUSTOMER REGION CUST_SALES REGION_SALES
--
-------- ---------- ---------- ------------
4
5
37802
37802
10
6
64315
68065
11
7
12204
12204

SQL
>
现在我们已经知道这些大客户是谁了!哦,不过这还不够,如果我们想要知道每个大客户所占的订单比例呢?看看下面的SQL语句,只需要一个简单的Round函数就搞定了。
SQL
>
select
all_sales.
*
,
2
100 * round(cust_sales / region_sales, 2) || '%' Percent
3
from
(
select
o.cust_nbr customer,
4
o.region_id region,
5
sum
(o.tot_sales) cust_sales,
6
sum
(
sum
(o.tot_sales))
over
(partition
by
o.region_id) region_sales
7
from
orders_tmp o
8
where
o.
year
=
2001
9
group
by
o.region_id, o.cust_nbr) all_sales
10
where
all_sales.cust_sales
>
all_sales.region_sales
*
0.2
;

CUSTOMER REGION CUST_SALES REGION_SALES
PERCENT
--
-------- ---------- ---------- ------------ ----------------------------------------
4
5
37802
37802
100
%
10
6
64315
68065
94
%
11
7
12204
12204
100
%
总结:
①Over函数指明在那些字段上做分析,其内跟Partition by表示对数据进行分组。注意Partition by可以有多个字段。
②Over函数可以和其它聚集函数、分析函数搭配,起到不同的作用。例如这里的SUM,还有诸如Rank,Dense_rank等。
一.分析函数2(rank"dense_rank"row_number)
一、使用rownum为记录排名:
在前面一篇《Oracle开发专题之:分析函数》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题:
①对所有客户按订单总额进行排名
②按区域和客户订单总额进行排名
③找出订单总额排名前13位的客户
④找出订单总额最高、最低的客户
⑤找出订单总额排名前25%的客户
按照前面第一篇文章的思路,我们只能做到对各个分组的数据进行统计,如果需要排名的话那么只需要简单地加上rownum不就行了吗?事实情况是否如此想象般简单,我们来实践一下。
【1】测试环境:
SQL
>
desc
user_order;
Name
Null
? Type
--
--------------------------------------- -------- ----------------------------
REGION_ID
NUMBER
(
2
)
CUSTOMER_ID
NUMBER
(
2
)
CUSTOMER_SALES
NUMBER
【2】测试数据:
SQL
>
select
*
from
user_order
order
by
customer_sales;

REGION_ID CUSTOMER_ID CUSTOMER_SALES
--
-------- ----------- --------------
5
1
151162
10
29
903383
6
7
971585
10
28
986964
9
21
1020541
9
22
1036146
8
16
1068467
6
8
1141638
5
3
1161286
5
5
1169926
8
19
1174421
7
12
1182275
7
11
1190421
6
10
1196748
6
9
1208959
10
30
1216858
5 2 1224992
9 24 1224992
9 23 1224992
8
18
1253840
7
15
1255591
7
13
1310434
10
27
1322747
8
20
1413722
6
6
1788836
10
26
1808949
5
4
1878275
7
14
1929774
8
17
1944281
9
25
2232703

30
rows selected.
注意这里有3条记录的订单总额是一样的。假如我们现在需要筛选排名前12位的客户,如果使用rownum会有什么样的后果呢?
SQL
>
select
rownum, t.
*
2
from
(
select
*
3
from
user_order
4
order
by
customer_sales
desc
) t
5
where
rownum
<=
12
6
order
by
customer_sales
desc
;

ROWNUM REGION_ID CUSTOMER_ID CUSTOMER_SALES
--
-------- ---------- ----------- --------------
1
9
25
2232703
2
8
17
1944281
3
7
14
1929774
4
5
4
1878275
5
10
26
1808949
6
6
6
1788836
7
8
20
1413722
8
10
27
1322747
9
7
13
1310434
10
7
15
1255591
11
8
18
1253840
12 5 2 1224992

12
rows selected.
很明显假如只是简单地按rownum进行排序的话,我们漏掉了另外两条记录(参考上面的结果)。
二、使用分析函数来为记录排名:
针对上面的情况,Oracle从8i开始就提供了3个分析函数:rand,dense_rank,row_number来解决诸如此类的问题,下面我们来看看这3个分析函数的作用以及彼此之间的区别:
Rank,Dense_rank,Row_number函数为每条记录产生一个从1开始至N的自然数,N的值可能小于等于记录的总数。这3个函数的唯一区别在于当碰到相同数据时的排名策略。
①ROW_NUMBER:
Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。
②DENSE_RANK:
Dense_rank函数返回一个唯一的值,除非当碰到相同数据时,此时所有相同数据的排名都是一样的。
③RANK:
Rank函数返回一个唯一的值,除非遇到相同的数据时,此时所有相同数据的排名是一样的,同时会在最后一条相同记录和下一条不同记录的排名之间空出排名。
这样的介绍有点难懂,我们还是通过实例来说明吧,下面的例子演示了3个不同函数在遇到相同数据时不同排名策略:
SQL
>
select
region_id, customer_id,
sum
(customer_sales) total,
2
rank()
over
(
order by sum(customer_sales) desc
) rank,
3
dense_rank()
over
(
order by sum(customer_sales) desc
) dense_rank,
4
row_number()
over
(
order by sum(customer_sales) desc
) row_number
5
from
user_order
6
group
by
region_id, customer_id;

REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER
--
-------- ----------- ---------- ---------- ---------- ----------
8
18
1253840
11
11
11
5
2
1224992
12
12
12
9
23
1224992
12
12
13
9
24
1224992
12
12
14
10
30
1216858
15 13 15

30
rows selected.
请注意上面的绿色高亮部分,这里生动的演示了3种不同的排名策略:
①对于第一条相同的记录,3种函数的排名都是一样的:12
②当出现第二条相同的记录时,Rank和Dense_rank依然给出同样的排名12;而row_number则顺延递增为13,依次类推至第三条相同的记录
③当排名进行到下一条不同的记录时,可以看到Rank函数在12和15之间空出了13,14的排名,因为这2个排名实际上已经被第二、三条相同的记录占了。而Dense_rank则顺序递增。row_number函数也是顺序递增
比较上面3种不同的策略,我们在选择的时候就要根据客户的需求来定夺了:
①假如客户就只需要指定数目的记录,那么采用row_number是最简单的,但有漏掉的记录的危险
②假如客户需要所有达到排名水平的记录,那么采用rank或dense_rank是不错的选择。至于选择哪一种则看客户的需要,选择dense_rank或得到最大的记录
三、使用分析函数为记录进行分组排名:
上 面的排名是按订单总额来进行排列的,现在跟进一步:假如是为各个地区的订单总额进行排名呢?这意味着又多了一次分组操作:对记录按地区分组然后进行排名。 幸亏Oracle也提供了这样的支持,我们所要做的仅仅是在over函数中order by的前面增加一个分组子句:partition by region_id。
SQL
>
select
region_id, customer_id,
sum
(customer_sales) total,
2
rank()
over
(partition by region_id
order
by
sum
(customer_sales)
desc
) rank,
3
dense_rank()
over
(partition by region_id
order
by
sum
(customer_sales)
desc
) dense_rank,
4
row_number()
over
(partition by region_id
order
by
sum
(customer_sales)
desc
) row_number
5
from
user_order
6
group
by
region_id, customer_id;

REGION_ID CUSTOMER_ID TOTAL RANK DENSE_RANK ROW_NUMBER
--
-------- ----------- ---------- ---------- ---------- ----------
5
4
1878275
1
1
1
5
2
1224992
2
2
2
5
5
1169926
3
3
3
6
6
1788836
1
1
1
6
9
1208959
2
2
2
6
10
1196748
3
3
3

30
rows selected.
现在我们看到的排名将是基于各个地区的,而非所有区域的了!Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。
三.分析函数3(top"bottom n、first"last、ntile)
一、带空值的排列:
在前面《Oracle开发专题之:分析函数2(Rank、Dense_rank、row_number)》一文中,我们已经知道了如何为一批记录进行全排列、分组排列。假如被排列的数据中含有空值呢?
SQL
>
select
region_id, customer_id,
2
sum
(customer_sales) cust_sales,
3
sum
(
sum
(customer_sales))
over
(partition
by
region_id) ran_total,
4
rank()
over
(partition
by
region_id
5
order by sum(customer_sales) desc
) rank
6
from
user_order
7
group
by
region_id, customer_id;

REGION_ID CUSTOMER_ID CUST_SALES RAN_TOTAL RANK
--
-------- ----------- ---------- ---------- ----------
10
31
6238901
1
10
26
1808949
6238901
2
10
27
1322747
6238901
3
10
30
1216858
6238901
4
10
28
986964
6238901
5
10
29
903383
6238901
6
我们看到这里有一条记录的CUST_TOTAL字段值为NULL,但居然排在第一名了!显然这不符合情理。所以我们重新调整完善一下我们的排名策略,
看看下面的语句:
SQL
>
select
region_id, customer_id,
2
sum
(customer_sales) cust_total,
3
sum
(
sum
(customer_sales))
over
(partition
by
region_id) reg_total,
4
rank()
over
(partition
by
region_id
order by sum(customer_sales) desc NULLS LAST
) rank
5
from
user_order
6
group
by
region_id, customer_id;

REGION_ID CUSTOMER_ID CUST_TOTAL REG_TOTAL RANK
--
-------- ----------- ---------- ---------- ----------
10
26
1808949
6238901
1
10
27
1322747
6238901
2
10
30
1216858
6238901
3
10
28
986964
6238901
4
10
29
903383
6238901
5
10
31
6238901
6
绿色高亮处,NULLS LAST/FIRST告诉Oracle让空值排名最后后第一。
注意是NULLS,不是NULL。
二、Top/Bottom N查询:
在日常的工作生产中,我们经常碰到这样的查询:找出排名前5位的订单客户、找出排名前10位的销售人员等等。现在这个对我们来说已经是很简单的问题了。下面我们用一个实际的例子来演示:
【1】找出所有订单总额排名前3的大客户:
SQL
>
select
*
SQL
>
from
(
select
region_id,
SQL
>
customer_id,
SQL
>
sum
(customer_sales) cust_total,
SQL
>
rank() over(order by sum(customer_sales) desc NULLS LAST) rank
SQL
>
from
user_order
SQL
>
group
by
region_id, customer_id)
SQL
>
where
rank
<=
3
;

REGION_ID CUSTOMER_ID CUST_TOTAL RANK
--
-------- ----------- ---------- ----------
9
25
2232703
1
8
17
1944281
2
7
14
1929774
3

SQL
>
2】找出每个区域订单总额排名前3的大客户:
SQL
>
select
*
2
from
(
select
region_id,
3
customer_id,
4
sum
(customer_sales) cust_total,
5
sum
(
sum
(customer_sales))
over
(partition
by
region_id) reg_total,
6
rank() over(partition by region_id
order by sum(customer_sales) desc NULLS LAST) rank
7
from
user_order
8
group
by
region_id, customer_id)
9
where rank <= 3;

REGION_ID CUSTOMER_ID CUST_TOTAL REG_TOTAL RANK
--
-------- ----------- ---------- ---------- ----------
5
4
1878275
5585641
1
5
2
1224992
5585641
2
5
5
1169926
5585641
3
6
6
1788836
6307766
1
6
9
1208959
6307766
2
6
10
1196748
6307766
3
7
14
1929774
6868495
1
7
13
1310434
6868495
2
7
15
1255591
6868495
3
8
17
1944281
6854731
1
8
20
1413722
6854731
2
8
18
1253840
6854731
3
9
25
2232703
6739374
1
9
23
1224992
6739374
2
9
24
1224992
6739374
2
10
26
1808949
6238901
1
10
27
1322747
6238901
2
10
30
1216858
6238901
3

18
rows selected.
三、First/Last排名查询:
想象一下下面的情形:找出订单总额最多、最少的客户。按照前面我 们学到的知识,这个至少需要2个查询。第一个查询按照订单总额降序排列以期拿到第一名,第二个查询按照订单总额升序排列以期拿到最后一名。是不是很烦?因 为Rank函数只告诉我们排名的结果,却无法自动替我们从中筛选结果。
幸好Oracle为我们在排列函数之外提供了两个额外的函数:first、last函数,专门用来解决这种问题。
还是用实例说话:
SQL
>
select
min(customer_id)
2
keep (dense_rank first
order
by
sum
(customer_sales)
desc
) first,
3
min(customer_id)
4
keep (dense_rank last order by sum(customer_sales) desc)
last
5
from
user_order
6
group
by
customer_id;

FIRST LAST
--
-------- ----------
31
1
这里有几个看起来比较疑惑的地方:
①为什么这里要用min函数
②Keep这个东西是干什么的
③fist/last是干什么的
④dense_rank和dense_rank()有什么不同,能换成rank吗?
首先解答一下第一个问题:min函数的作用是用于当存在多个First/Last情况下保证返回唯一的记录。假如我们去掉会有什么样的后果呢?
SQL
>
select
keep (dense_rank first
order
by
sum
(customer_sales)
desc
) first,
2
keep (dense_rank last
order
by
sum
(customer_sales)
desc
) last
3
from
user_order
4
group
by
customer_id;
select
keep (dense_rank first
order
by
sum
(customer_sales)
desc
) first,
*
ERROR at line
1
:
ORA
-
00907
: missing
right
parenthesis
接下来看看第2个问题:keep是干什么用的?从上面的结果我们已经知道Oracle对排名的结果只“保留”2条数据,这就是keep的作用。告诉Oracle只保留符合keep条件的记录。
那么什么才是符合条件的记录呢?这就是第3个问题了。dense_rank是告诉Oracle排列的策略,first/last则告诉最终筛选的条件。
第4个问题:如果我们把dense_rank换成rank呢?
SQL
>
select
min
(region_id)
2
keep(rank first
order
by
sum
(customer_sales)
desc
) first,
3
min
(region_id)
4
keep(rank last
order
by
sum
(customer_sales)
desc
) last
5
from
user_order
6
group
by
region_id;
select
min
(region_id)
*
ERROR at line
1
:
ORA
-
02000
: missing DENSE_RANK
四、按层次查询:
现在我们已经见识了如何通过Oracle的分析函数来获取Top/Bottom N,第一个,最后一个记录。有时我们会收到类似下面这样的需求:找出订单总额排名前1/5的客户。
很熟悉是不?我们马上会想到第二点中提到的方法,可是rank函数只为我们做好了排名,并不知道每个排名在总排名中的相对位置,这时候就引入了另外一个分析函数NTile,下面我们就以上面的需求为例来讲解一下:
SQL
>
select
region_id,
2
customer_id,
3
ntile(5)
over
(
order
by
sum
(customer_sales)
desc
) til
4
from
user_order
5
group
by
region_id, customer_id;

REGION_ID CUSTOMER_ID TILE
--
-------- ----------- ----------
10
31
1
9
25
1
10
26
1
6
6
1
8
18
2
5
2
2
9
23
3
6
9
3
7
11
3
5
3
4
6
8
4
8
16
4
6
7
5
10
29
5
5
1
5
Ntil函数为各个记录在记录集中的排名计算比例,我们看到所有的记录被分成5个等级,那么假如我们只需要前1/5的记录则只需要截取TILE的值为1的记录就可以了。假如我们需要排名前25%的记录(也就是1/4)那么我们只需要设置ntile(4)就可以了。