高等数学公式

一、函数 极限 连续

1.2 函数

1.2.1 幂函数运算法则

  • x a ⋅ x b = x a + b x^a ·x^b=x^{a+b} xaxb=xa+b
  • x a x b = x a − b \frac{x^a}{x^b}=x^{a-b} xbxa=xab
  • ( x a ) b = x a b (x^a)^b=x^{ab} (xa)b=xab

1.2.2 指数函数运算法则

  • a x b x = ( a b ) x a^xb^x=(ab)^x axbx=(ab)x
  • a x b x = ( a b ) x \frac{a^x}{b^x}=(\frac{a}{b})^x bxax=(ba)x

1.2.3 对数函数运算法则

  • a b = x → l o g a x = b a^b=x→log_ax=b ab=xlogax=b
  • l o g a ( x ⋅ y ) = l o g a x + l o g a y log_a(x·y)=log_ax+log_ay loga(xy)=logax+logay
  • l o g a ( x y ) = l o g a x − l o g a y log_a(\frac{x}{y})=log_ax-log_ay loga(yx)=logaxlogay
  • l o g a x y = y l o g a x log_ax^y=ylog_ax logaxy=ylogax
  • a l o g a x = x → a l o g a x = a b = x a^{log_ax}=x→a^{log_ax}=a^b=x alogax=xalogax=ab=x
  • l o g e x = l n x log_ex=lnx logex=lnx

1.2.4 三角函数

1.2.4.1 诱导公式
  • 一全二正三切四余;奇变偶不变,符号看象限。
sin(x) cos(x)
s i n ( − a ) = − s i n a sin(-a)=-sina sin(a)=sina cos(-a)=cosa
s i n ( π 2 + a ) = c o s a sin(\frac{π}{2}+a)=cosa sin(2π+a)=cosa c o s ( π 2 + a ) = − s i n a cos(\frac{π}{2}+a)=-sina cos(2π+a)=sina
s i n ( π 2 − a ) = c o s a sin(\frac{π}{2}-a)=cosa sin(2πa)=cosa c o s ( π 2 − a ) = s i n a cos(\frac{π}{2}-a)=sina cos(2πa)=sina
s i n ( π + a ) = − s i n a sin(π+a)=-sina sin(π+a)=sina c o s ( π + a ) = − c o s a cos(π+a)=-cosa cos(π+a)=cosa
s i n ( π − a ) = s i n a sin(π-a)=sina sin(πa)=sina c o s ( π − a ) = − c o s a cos(π-a)=-cosa cos(πa)=cosa
1.2.4.2 两角和差公式
sin(x) cos(x) tan(x)
s i n ( a + b ) = s i n a c o s b + c o s a s i n b sin(a+b)=sinacosb+cosasinb sin(a+b)=sinacosb+cosasinb c o s ( a + b ) = c o s a c o s b − s i n a s i n b cos(a+b)=cosacosb-sinasinb cos(a+b)=cosacosbsinasinb t a n ( a + b ) = t a n a + t a n b 1 − t a n a t a n b tan(a+b)=\frac{tana+tanb}{1-tanatanb} tan(a+b)=1tanatanbtana+tanb
s i n ( a − b ) = s i n a c o s b − c o s a s i n b sin(a-b)=sinacosb-cosasinb sin(ab)=sinacosbcosasinb c o s ( a − b ) = c o s a c o s b + s i n a s i n b cos(a-b)=cosacosb+sinasinb cos(ab)=cosacosb+sinasinb t a n ( a − b ) = t a n a − t a n b 1 + t a n a t a n b tan(a-b)=\frac{tana-tanb}{1+tanatanb} tan(ab)=1+tanatanbtanatanb
1.2.4.3 和差化积公式
sin(x) cos(x)
s i n a + s i n b = 2 s i n ( a + b 2 ) c o s ( a − b 2 ) sina+sinb=2sin(\frac{a+b}{2})cos(\frac{a-b}{2}) sina+sinb=2sin(2a+b)cos(2ab) c o s a + c o s b = 2 c o s ( a + b 2 ) c o s ( a − b 2 ) cosa+cosb=2cos(\frac{a+b}{2})cos(\frac{a-b}{2}) cosa+cosb=2cos(2a+b)cos(2ab)
s i n a − s i n b = 2 s i n ( a − b 2 ) c o s ( a + b 2 ) sina-sinb=2sin(\frac{a-b}{2})cos(\frac{a+b}{2}) sinasinb=2sin(2ab)cos(2a+b) c o s a − c o s b = 2 s i n ( a + b 2 ) s i n ( a − b 2 ) cosa-cosb=2sin(\frac{a+b}{2})sin(\frac{a-b}{2}) cosacosb=2sin(2a+b)sin(2ab)
1.2.4.4 积化和差公式
  • s i n a s i n b = − 1 2 [ c o s ( a + b ) − c o s ( a − b ) ] sinasinb=-\frac{1}{2}[cos(a+b)-cos(a-b)] sinasinb=21[cos(a+b)cos(ab)]
  • c o s a c o s b = 1 2 [ c o s ( a + b ) + c o s ( a − b ) ] cosacosb=\frac{1}{2}[cos(a+b)+cos(a-b)] cosacosb=21[cos(a+b)+cos(ab)]
  • s i n a c o s b = 1 2 [ s i n ( a + b ) + s i n ( a − b ) ] sinacosb=\frac{1}{2}[sin(a+b)+sin(a-b)] sinacosb=21[sin(a+b)+sin(ab)]
1.2.4.5 二倍角公式
  • s i n 2 a = 2 s i n a c o s a sin2a=2sinacosa sin2a=2sinacosa
  • c o s 2 a = c o s 2 a − s i n 2 a = 2 c o s 2 a − 1 = 1 − 2 s i n 2 a cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a cos2a=cos2asin2a=2cos2a1=12sin2a
1.2.4.6 半角公式
  • s i n 2 a = 1 2 ( 1 − c o s 2 a ) sin^2a=\frac{1}{2}(1-cos2a) sin2a=21(1cos2a)
  • c o s 2 a = 1 2 ( 1 + c o s 2 a ) cos^2a=\frac{1}{2}(1+cos2a) cos2a=21(1+cos2a)
  • t a n 2 a = 1 − c o s 2 a s i n 2 a = s i n 2 a 1 + c o s 2 a tan^2a=\frac{1-cos2a}{sin2a}=\frac{sin2a}{1+cos2a} tan2a=sin2a1cos2a=1+cos2asin2a
1.2.4.7 补充公式
s i n a = 2 t a n a 2 1 + t a n 2 a 2 sina=\frac{2tan\frac{a}{2}}{1+tan^2\frac{a}{2}} sina=1+tan22a2tan2a c o s a = 1 − t a n 2 a 2 1 + t a n 2 a 2 cosa=\frac{1-tan^2\frac{a}{2}}{1+tan^2\frac{a}{2}} cosa=1+tan22a1tan22a t a n a = 2 t a n a 2 1 − t a n 2 a 2 tana=\frac{2tan\frac{a}{2}}{1-tan^2\frac{a}{2}} tana=1tan22a2tan2a
c o t a = 1 t a n a cota=\frac{1}{tana} cota=tana1 s e c a = 1 c o s a seca=\frac{1}{cosa} seca=cosa1 c s c a = 1 s i n a csca=\frac{1}{sina} csca=sina1
  • t a n ( 3 2 π − a ) = c o t a tan(\frac{3}{2}π-a)=cota tan(23πa)=cota
  • t a n 2 x + 1 = s e c 2 x tan^2x+1=sec^2x tan2x+1=sec2x 1 + c o t 2 x = c s c 2 x 1+cot^2x=csc^2x 1+cot2x=csc2x s i n 2 x + c o s 2 x = 1 sin^2x+cos^2x=1 sin2x+cos2x=1

1.4 极限的计算

1.4.1 极限的四则运算法则

  • 如果 lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limxx0f(x)=A lim ⁡ x → x 0 g ( x ) = B \lim_{x \to x_0} g(x) = B limxx0g(x)=B,则有:

    • 啊实打实多
  • sadsaa

你可能感兴趣的:(数学)