RandLA-Net源码解析

前言

论文:https://arxiv.org/abs/1911.11236
github:https://github.com/QingyongHu/RandLA-Net

  • 本文章以运行S3DIS数据集为例.
  • 本文章不是运行指南,仅为阅读源码的笔记。

数据准备

下载数据集解压到/data/S3DIS/Stanford3dDataset_v1.2_Aligned_Version文件夹中。
Stanford3dDataset_v1.2_Aligned_Version文件夹中包含多个Area_*(区域)文件夹。
每个Area(区域)文件夹中包含多个场景文件夹。
每个场景文件夹(以Area_1\conferenceRoom_1为例)中主要包含一个场景点云文件conferenceRoom_1.txt和一个分类点云文件夹Annotations
conferenceRoom_1.txt中直接以XYZRGB格式储存了整个场景的点云。

-15.609 39.505 2.214 71 64 54
-15.634 39.518 2.198 68 64 52
-15.622 39.514 2.195 70 61 52
-15.621 39.510 2.215 72 65 55
-15.606 39.505 2.211 71 63 52
-15.657 39.524 2.213 76 70 58
-15.549 39.484 2.206 63 53 44

Annotations文件夹中的文件按照不同分类储存了点云,文件名为分类名称,文件内容同样为XYZRGB格式的点云。
RandLA-Net源码解析_第1张图片

data_prepare_s3dis.py

在准备好数据集之后运行data_prepare_s3dis.py进行数据预处理。
预处理会在/data/S3DIS文件夹下生成两个额外的文件夹original_plyinput_0.040

程序首先将Stanford3dDataset_v1.2_Aligned_Version下的每个场景处理成一个区域名_场景名.ply的文件,放入original_ply文件夹中。其中对XYZ进行了平移,使得X, Y, Z均大于等于0,数据以XYZRGBL(L为label,分类编码的索引)方式储存。

随后对每个区域的每个场景进行如下操作:

  • 进行网格下采样,将颜色进行归一化(RGB/255),保存在input_0.040/区域名_场景名.ply
  • 对下采样后的点云坐标构建KD树,将KD树保存在input_0.040/区域名_场景名_KDTree.pkl
  • 使用KD树查询每个原始点最邻近的下采样点index,将查询到的等同原始点数量index列表保存在input_0.040/区域名_场景名_proj.pkl

注意:以下代码为在windows下运行做过部分修改,仅供参考。

from sklearn.neighbors import KDTree
from os.path import join, exists, dirname, abspath
import numpy as np
import pandas as pd
import os, sys, glob, pickle

BASE_DIR = dirname(abspath(__file__))
ROOT_DIR = dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(ROOT_DIR)
from helper_ply import write_ply
from helper_tool import DataProcessing as DP

dataset_path = join(ROOT_DIR, 'data/S3DIS/Stanford3dDataset_v1.2_Aligned_Version')
anno_paths = [line.rstrip() for line in open(join(BASE_DIR, 'meta/anno_paths.txt'))]
anno_paths = [join(dataset_path, p) for p in anno_paths]    # 每个Annotations文件夹的绝对路径

gt_class = [x.rstrip() for x in open(join(BASE_DIR, 'meta/class_names.txt'))]
gt_class2label = {cls: i for i, cls in enumerate(gt_class)}     # class:n

sub_grid_size = 0.04
original_pc_folder = join(dirname(dataset_path), 'original_ply')
sub_pc_folder = join(dirname(dataset_path), 'input_{:.3f}'.format(sub_grid_size))
os.mkdir(original_pc_folder) if not exists(original_pc_folder) else None
os.mkdir(sub_pc_folder) if not exists(sub_pc_folder) else None
out_format = '.ply'


def convert_pc2ply(anno_path, save_path):
    """
    将每个场景压成一个文件,位于data/S3DIS/original_ply中
    Convert original dataset files to ply file (each line is XYZRGBL).L:label
    We aggregated all the points from each instance in the room.
    :param anno_path: path to annotations. e.g. Area_1/office_2/Annotations/
    :param save_path: path to save original point clouds (each line is XYZRGBL)
    :return: None
    """
    data_list = []

    for f in glob.glob(join(anno_path, '*.txt')):
        class_name = os.path.basename(f).split('_')[0]  # 确定标签
        if class_name not in gt_class:  # note: in some room there is 'staris' class..
            class_name = 'clutter'
        pc = pd.read_csv(f, header=None, delim_whitespace=True).values  # 读入数据
        labels = np.ones((pc.shape[0], 1)) * gt_class2label[class_name]  # 将标签转为label
        data_list.append(np.concatenate([pc, labels], 1))  # [Nx7] 结合数据和标签

    pc_label = np.concatenate(data_list, 0)     # Nx7
    xyz_min = np.amin(pc_label, axis=0)[0:3]    # 获取xyz各自的最小值
    pc_label[:, 0:3] -= xyz_min                 # 平移

    xyz = pc_label[:, :3].astype(np.float32)
    colors = pc_label[:, 3:6].astype(np.uint8)
    labels = pc_label[:, 6].astype(np.uint8)
    write_ply(save_path, (xyz, colors, labels), ['x', 'y', 'z', 'red', 'green', 'blue', 'class'])

    # save sub_cloud and KDTree file 下采样 和 KD树
    sub_xyz, sub_colors, sub_labels = DP.grid_sub_sampling(xyz, colors, labels, sub_grid_size)  # 网格下采样,点数 114w -> 8w
    sub_colors = sub_colors / 255.0
    sub_ply_file = join(sub_pc_folder, save_path.replace('/', '\\').split('\\')[-1][:-4] + '.ply')
    write_ply(sub_ply_file, [sub_xyz, sub_colors, sub_labels], ['x', 'y', 'z', 'red', 'green', 'blue', 'class'])

    search_tree = KDTree(sub_xyz)
    kd_tree_file = join(sub_pc_folder, str(save_path.replace('/', '\\').split('\\')[-1][:-4]) + '_KDTree.pkl')
    with open(kd_tree_file, 'wb') as f:
        pickle.dump(search_tree, f)

    proj_idx = np.squeeze(search_tree.query(xyz, return_distance=False))    # 查询原始点临近的下采样点index
    proj_idx = proj_idx.astype(np.int32)
    proj_save = join(sub_pc_folder, str(save_path.replace('/', '\\').split('\\')[-1][:-4]) + '_proj.pkl')
    with open(proj_save, 'wb') as f:
        pickle.dump([proj_idx, labels], f)


if __name__ == '__main__':
    # Note: there is an extra character in the v1.2 data in Area_5/hallway_6. It's fixed manually.
    for annotation_path in anno_paths:
        print(annotation_path)
        elements = str(annotation_path).replace('/', '\\').split('\\')
        out_file_name = elements[-3] + '_' + elements[-2] + out_format
        convert_pc2ply(annotation_path, join(original_pc_folder, out_file_name))

main_S3DIS.py

在完成数据预处理后运行main_S3DIS.py,传入gpu编号(默认为0),测试区域(默认为5:即使用Area_5进行测试,其他区域进行训练),模式(train, test, vis),指定预训练模型(仅mode=test时有效)。
例如:

python -B main_S3DIS.py --gpu 0 --mode train --test_area 1

加载数据

程序首先加载数据集,按照Area分为训练组和验证组,整理如下数据。

        # Initiate containers S:场景数量,P:原始点云数量,N:下采样后点云数量
        self.val_proj = []          # 验证集原始点云投影 Sv*P
        self.val_labels = []        # 验证集原始点云标签 Sv*P
        self.possibility = {}       # 每个点概率 S*N
        self.min_possibility = {}   # 每个场景最小概率 S
        self.input_trees = {'training': [], 'validation': []}   # KDTree S
        self.input_colors = {'training': [], 'validation': []}  # RGB S*N*3
        self.input_labels = {'training': [], 'validation': []}  # 标签 S*N*1
        self.input_names = {'training': [], 'validation': []}   # 区域名_场景名 S
        self.load_sub_sampled_clouds(cfg.sub_grid_size)
    def load_sub_sampled_clouds(self, sub_grid_size):
        tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
        for i, file_path in enumerate(self.all_files):
            t0 = time.time()
            cloud_name = file_path.replace('/', '\\').split('\\')[-1][:-4]  # 获取点云名(去除路径去除后缀)
            if self.val_split in cloud_name:    # 选中的为验证组,其余为训练组
                cloud_split = 'validation'
            else:
                cloud_split = 'training'

            # Name of the input files
            kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))    # 加载KD树
            sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))           # 加载下采样后的点云数据

            data = read_ply(sub_ply_file)
            sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T    # N*3
            sub_labels = data['class']  # N*1

            # Read pkl with search tree
            with open(kd_tree_file, 'rb') as f:
                search_tree = pickle.load(f)

            self.input_trees[cloud_split] += [search_tree]
            self.input_colors[cloud_split] += [sub_colors]
            self.input_labels[cloud_split] += [sub_labels]
            self.input_names[cloud_split] += [cloud_name]

            size = sub_colors.shape[0] * 4 * 7
            print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.replace('/', '\\').split('\\')[-1], size * 1e-6, time.time() - t0))

        print('\nPreparing reprojected indices for testing')    # 为测试准备重投影的指标

        # Get validation and test reprojected indices 获取验证和测试重投影的指标
        for i, file_path in enumerate(self.all_files):
            t0 = time.time()
            cloud_name = file_path.replace('/', '\\').split('\\')[-1][:-4]

            # Validation projection and labels
            if self.val_split in cloud_name:
                proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
                with open(proj_file, 'rb') as f:
                    proj_idx, labels = pickle.load(f)
                self.val_proj += [proj_idx]
                self.val_labels += [labels]
                print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))

初始化输入信息流

主要包括:构建生成器、使用生成器构建数据集、设置MAP函数预处理。

    def init_input_pipeline(self):
        print('Initiating input pipelines')
        cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]    # 设置忽略的分类
        gen_function, gen_types, gen_shapes = self.get_batch_gen('training')    # 加载生成器
        gen_function_val, _, _ = self.get_batch_gen('validation')
        self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)   # 生成器构建数据集
        self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)

        self.batch_train_data = self.train_data.batch(cfg.batch_size)   # 设置batch_size
        self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
        map_func = self.get_tf_mapping2()

        self.batch_train_data = self.batch_train_data.map(map_func=map_func)    # 设置预处理函数
        self.batch_val_data = self.batch_val_data.map(map_func=map_func)

        self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)  # 设置预加载下批次文件
        self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
        # 构建一个可重新初始化的迭代器,提供 迭代器输出 和 使用训练组或验证组对其进行初始化 的操作
        iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
        self.flat_inputs = iter.get_next()
        self.train_init_op = iter.make_initializer(self.batch_train_data)
        self.val_init_op = iter.make_initializer(self.batch_val_data)

构建数据生成器

生成器初始化时执行以下操作:

  1. 为每个点云生成一个“概率”。(这里的概率使用黑体加粗,因为该概率和我们平时常用的概率意义不同)
  2. 确定每个场景中点云的最小概率

生成器提供以下数据处理操作:

  1. 选择 存在最低概率的场景最低概率的点 ,称为中心点
  2. 中心点坐标添加噪声。
  3. 通过KD树查找中心点附近一定数量(超参数num_points = 40960)的点(包括原中心点)。若该场景点数量不足,则查找该场景中所有点,这些查找到的点称为被选点
  4. 将查找到的被选点顺序打乱。
  5. 获取被选点的坐标,颜色,标签。
  6. 通过被选点坐标 - 中心点坐标被选点中心归零。
  7. 增加被选点的概率,越接近中心增加的数值越高,以降低这些点再次被选中的概率。
  8. 若在步骤3中未查找到足够的点,在被选点中随机重复采点,使其达到参数要求的数量。
  9. 输出:XYZ,RGB,Label,被选点的index,场景的index。
    # Generate the input data flow
    def get_batch_gen(self, split):
        if split == 'training':
            num_per_epoch = cfg.train_steps * cfg.batch_size
        elif split == 'validation':
            num_per_epoch = cfg.val_steps * cfg.val_batch_size

        self.possibility[split] = []
        self.min_possibility[split] = []
        # Random initialize 随机初始化
        for i, tree in enumerate(self.input_colors[split]):
            self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]  # 为点云的每个原始点生成一个"概率"
            self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]     # 确定最小概率

        def spatially_regular_gen():    # 空间正则生成器
            # Generator loop
            for i in range(num_per_epoch):  # 每epoch训练次数 * batch_size

                # Choose the cloud with the lowest probability 选择存在最低概率点的点云
                cloud_idx = int(np.argmin(self.min_possibility[split]))

                # choose the point with the minimum of possibility in the cloud as query point 选择该点云概率最低的点
                point_ind = np.argmin(self.possibility[split][cloud_idx])

                # Get all points within the cloud from tree structure 从树结构中获取云中的所有点坐标
                points = np.array(self.input_trees[split][cloud_idx].data, copy=False)

                # Center point of input region 获取该点云的概率最低点(称为中心点)坐标
                center_point = points[point_ind, :].reshape(1, -1)  # 1*3

                # Add noise to the center point 为中心点坐标添加噪声
                noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)    # 1*3
                pick_point = center_point + noise.astype(center_point.dtype)

                # Check if the number of points in the selected cloud is less than the predefined num_points
                if len(points) < cfg.num_points:    # 检查点云数量是否足够
                    # Query all points within the cloud 查询云中的所有点
                    queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0]
                else:
                    # Query the predefined number of points 查询一定数量的点
                    queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]

                # Shuffle index 随机打乱点云顺序
                queried_idx = DP.shuffle_idx(queried_idx)
                # Get corresponding points and colors based on the index 根据索引得到相应的点、颜色、标签
                queried_pc_xyz = points[queried_idx]
                queried_pc_xyz = queried_pc_xyz - pick_point    # 点云居中
                queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx]
                queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx]

                # Update the possibility of the selected points 更新选择的点的概率,距离中心点越近增加越多
                dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1)
                delta = np.square(1 - dists / np.max(dists))
                self.possibility[split][cloud_idx][queried_idx] += delta
                self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))  # 更新概率

                # up_sampled with replacement 若点数不足,进行上采样(随机重复采样)
                if len(points) < cfg.num_points:
                    queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels = \
                        DP.data_aug(queried_pc_xyz, queried_pc_colors, queried_pc_labels, queried_idx, cfg.num_points)

                if True:
                    yield (queried_pc_xyz.astype(np.float32),       # num_points*3
                           queried_pc_colors.astype(np.float32),    # num_points*3
                           queried_pc_labels,                       # num_points
                           queried_idx.astype(np.int32),            # num_points
                           np.array([cloud_idx], dtype=np.int32))   # int cloud_idx

        gen_func = spatially_regular_gen
        gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32)
        gen_shapes = ([None, 3], [None, 3], [None], [None], [None])
        return gen_func, gen_types, gen_shapes

MAP(数据预处理)

对生成器生成的数据进行一系列预处理:

  1. 将生成器生成的点称为原始点
  2. 获取原始点中每个点的K临近(超参数k=16)的原始点的index,记为原始点knn16原始点
  3. 原始点进行随机下采样,采样1/sub_sampling_ratio的点,得到下采样点
  4. 原始点knn16原始点进行和3相同的下采样,得到下采样点knn16原始点
  5. 获取下采样点中每个点的K=1临近的下采样点,记为下采样点knn1下采样点
  6. 使原始点=下采样点,回到步骤2,直到完成规定次数(超参数num_layers = 5)的下采样。

记录每次循环中的原始点原始点knn16原始点下采样点knn16原始点下采样点knn1下采样点
返回 记录的这些数据 和 生成器输出的 RGB,Label,被选点的index,场景的index。

    @staticmethod
    def get_tf_mapping2():
        # Collect flat inputs
        def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx):
            batch_features = tf.concat([batch_xyz, batch_features], axis=-1)
            input_points = []       # 原始点
            input_neighbors = []    # 原始点KNN16原始点
            input_pools = []        # 下采样点KNN16原始点
            input_up_samples = []   # 原始点KNN1下采样点

            for i in range(cfg.num_layers):
                neighbour_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)    # KNN
                sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]  # 下采样部分点
                pool_i = neighbour_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]  # KNN得到的也下采样
                up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)  # KNN搜索每个原点最近的下采样点
                input_points.append(batch_xyz)
                input_neighbors.append(neighbour_idx)
                input_pools.append(pool_i)
                input_up_samples.append(up_i)
                batch_xyz = sub_points      # 下采样点作为原始点进行再一次下采样

            input_list = input_points + input_neighbors + input_pools + input_up_samples    # 结合所有数据和原始数据
            input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx]

            return input_list

        return tf_map

RandLANet.py

该文件储存网络结构,供main_S3DIS.py调用。
首先我们看到模型快照会储存在results文件夹下

flat_inputs = dataset.flat_inputs   # 获取数据集输入
self.config = config
# Path of the result folder 设置存储文件夹
if self.config.saving:
    if self.config.saving_path is None:
        self.saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
    else:
        self.saving_path = self.config.saving_path
    makedirs(self.saving_path) if not exists(self.saving_path) else None

其次开始构建网络的输入和各种参数

# 开始构建网络
with tf.variable_scope('inputs'):
    self.inputs = dict()    # 读取数据集输入
    num_layers = self.config.num_layers
    self.inputs['xyz'] = flat_inputs[:num_layers]
    self.inputs['neigh_idx'] = flat_inputs[num_layers: 2 * num_layers]
    self.inputs['sub_idx'] = flat_inputs[2 * num_layers:3 * num_layers]
    self.inputs['interp_idx'] = flat_inputs[3 * num_layers:4 * num_layers]
    self.inputs['features'] = flat_inputs[4 * num_layers]
    self.inputs['labels'] = flat_inputs[4 * num_layers + 1]
    self.inputs['input_inds'] = flat_inputs[4 * num_layers + 2]
    self.inputs['cloud_inds'] = flat_inputs[4 * num_layers + 3]
    self.labels = self.inputs['labels']     # 初始化参数、变量等杂项
    self.is_training = tf.placeholder(tf.bool, shape=())
    self.training_step = 1
    self.training_epoch = 0
    self.correct_prediction = 0
    self.accuracy = 0
    self.mIou_list = [0]
    self.class_weights = DP.get_class_weights(dataset.name)
    self.Log_file = open('log_train_' + dataset.name + str(dataset.val_split) + '.txt', 'a')

网络核心结构

with tf.variable_scope('layers'):
    self.logits = self.inference(self.inputs, self.is_training)

在这个函数inference()中,就是网络的核心结构
首先使用一个全连接层将特征数据变换为B*N*1*8
随后叠加上多层(超参数 num_layers=5)的dilated_res_block(),每层dilated_res_block()之后还进行random_sample()

Encoder

def inference(self, inputs, is_training):
    d_out = self.config.d_out
    feature = inputs['features']    # B*N*3(RGB)
    feature = tf.layers.dense(feature, 8, activation=None, name='fc0')  # B*N*8
    feature = tf.nn.leaky_relu(tf.layers.batch_normalization(feature, -1, 0.99, 1e-6, training=is_training))
    feature = tf.expand_dims(feature, axis=2)   # B*N*1*8
    # ###########################Encoder############################
    f_encoder_list = []
    for i in range(self.config.num_layers):
        f_encoder_i = self.dilated_res_block(feature, inputs['xyz'][i], inputs['neigh_idx'][i], d_out[i],
                                             'Encoder_layer_' + str(i), is_training)
        f_sampled_i = self.random_sample(f_encoder_i, inputs['sub_idx'][i])
        feature = f_sampled_i
        if i == 0:
            f_encoder_list.append(f_encoder_i)
        f_encoder_list.append(f_sampled_i)
    # ###########################Encoder############################
    feature = helper_tf_util.conv2d(f_encoder_list[-1], f_encoder_list[-1].get_shape()[3].value, [1, 1],
                                    'decoder_0',
                                    [1, 1], 'VALID', True, is_training)     # B*N*1*1024
                                    
	...

dilated_res_block

RandLA-Net源码解析_第2张图片
这是作者论文中给出的dilated_res_block流程图,该流程图省略了部分细节,结合下面的building_block流程图能更加清晰的看出网络结构。(默认相关点数量k_n = 16
building_block_pos
RandLA-Net源码解析_第3张图片

    def dilated_res_block(self, feature, xyz, neigh_idx, d_out, name, is_training):
        f_pc = helper_tf_util.conv2d(feature, d_out // 2, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)  # B*N*1*d/2
        f_pc = self.building_block(xyz, f_pc, neigh_idx, d_out, name + 'LFA', is_training)
        f_pc = helper_tf_util.conv2d(f_pc, d_out * 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training,
                                     activation_fn=None)
        shortcut = helper_tf_util.conv2d(feature, d_out * 2, [1, 1], name + 'shortcut', [1, 1], 'VALID',
                                         activation_fn=None, bn=True, is_training=is_training)
        return tf.nn.leaky_relu(f_pc + shortcut)

    def building_block(self, xyz, feature, neigh_idx, d_out, name, is_training):
        d_in = feature.get_shape()[-1].value    # B*N*1*d/2
        f_xyz = self.relative_pos_encoding(xyz, neigh_idx)  # B*N*16*10 对点的相关位置信息进行编码
        f_xyz = helper_tf_util.conv2d(f_xyz, d_in, [1, 1], name + 'mlp1', [1, 1], 'VALID', True, is_training)# B*N*16*d/2
        f_neighbours = self.gather_neighbour(tf.squeeze(feature, axis=2), neigh_idx)  # B*N*16*d/2 获取点的相关颜色信息
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)    # B*N*16*d 连接颜色信息和位置信息
        f_pc_agg = self.att_pooling(f_concat, d_out // 2, name + 'att_pooling_1', is_training)# B*N*1*d/2 对相关信息进行基于自注意力的池化

        f_xyz = helper_tf_util.conv2d(f_xyz, d_out // 2, [1, 1], name + 'mlp2', [1, 1], 'VALID', True, is_training)# B*N*16*d/2
        f_neighbours = self.gather_neighbour(tf.squeeze(f_pc_agg, axis=2), neigh_idx)  # B*N*16*d/2 再次获取点的相关特征信息
        f_concat = tf.concat([f_neighbours, f_xyz], axis=-1)    # B*N*16*d 连接特征信息和位置信息
        f_pc_agg = self.att_pooling(f_concat, d_out, name + 'att_pooling_2', is_training)  # B*N*1*d 注意力池化
        return f_pc_agg     # B*N*1*d

    def relative_pos_encoding(self, xyz, neigh_idx):    # 编码相关点的距离,方位,原始点坐标和相关点坐标
        neighbor_xyz = self.gather_neighbour(xyz, neigh_idx)    # B*N*16*3
        xyz_tile = tf.tile(tf.expand_dims(xyz, axis=2), [1, 1, tf.shape(neigh_idx)[-1], 1])     # B*N*16*3
        relative_xyz = xyz_tile - neighbor_xyz  # 计算每个点相关点的相对坐标 B*N*16*3
        relative_dis = tf.sqrt(tf.reduce_sum(tf.square(relative_xyz), axis=-1, keepdims=True))  # 距离 B*N*16*1
        relative_feature = tf.concat([relative_dis, relative_xyz, xyz_tile, neighbor_xyz], axis=-1)
        return relative_feature  # B*N*16*10=距离B*N*16*1+相关点方位B*N*16*3+点坐标B*N*16*3+相关点坐标B*N*16*3
    
    @staticmethod
    def gather_neighbour(pc, neighbor_idx):
        # gather the coordinates or features of neighboring points  获取索引的坐标或特征
        batch_size = tf.shape(pc)[0]
        num_points = tf.shape(pc)[1]
        d = pc.get_shape()[2].value
        index_input = tf.reshape(neighbor_idx, shape=[batch_size, -1])  # batch_size * num_point*16
        features = tf.batch_gather(pc, index_input)     # 进行索引
        features = tf.reshape(features, [batch_size, num_points, tf.shape(neighbor_idx)[-1], d])
        return features     # B*N*16*d

random_sample

random_sample的内容比较简单,毕竟在数据预处理的时候就把每层的随机下采样做了,现在只需要做些索引工作就行了。

    @staticmethod
    def random_sample(feature, pool_idx):
        """
        :param feature: [B, N, d] input features matrix
        :param pool_idx: [B, N', max_num] N' < N, N' is the selected position after pooling
        :return: pool_features = [B, N', d] pooled features matrix
        """
        feature = tf.squeeze(feature, axis=2)   # B*N*d
        num_neigh = tf.shape(pool_idx)[-1]  # 16
        d = feature.get_shape()[-1]
        batch_size = tf.shape(pool_idx)[0]
        pool_idx = tf.reshape(pool_idx, [batch_size, -1])
        pool_features = tf.batch_gather(feature, pool_idx)
        pool_features = tf.reshape(pool_features, [batch_size, -1, num_neigh, d])   # B*N'*16*d
        pool_features = tf.reduce_max(pool_features, axis=2, keepdims=True)
        return pool_features    # B*N'*1*d

Decoder

首先进行和Encoder相反的操作:多层上采样和反卷积。
随后进行多次卷积处理(其中包含一次droupout),最终得到B*N*class的点云分类矩阵。

    # ###########################Decoder############################
    f_decoder_list = []
    for j in range(self.config.num_layers):
        f_interp_i = self.nearest_interpolation(feature, inputs['interp_idx'][-j - 1])  # 特征向上索引 B*N+*1*1024
        f_decoder_i = helper_tf_util.conv2d_transpose(tf.concat([f_encoder_list[-j - 2], f_interp_i], axis=3),  # B*N*1*1.5d
                                                      f_encoder_list[-j - 2].get_shape()[-1].value, [1, 1],
                                                      'Decoder_layer_' + str(j), [1, 1], 'VALID', bn=True,
                                                      is_training=is_training)      # 反卷积 B*N*1*0.5d
        feature = f_decoder_i
        f_decoder_list.append(f_decoder_i)
    # ###########################Decoder############################
    f_layer_fc1 = helper_tf_util.conv2d(f_decoder_list[-1], 64, [1, 1], 'fc1', [1, 1], 'VALID', True, is_training)  # B*N*1*64
    f_layer_fc2 = helper_tf_util.conv2d(f_layer_fc1, 32, [1, 1], 'fc2', [1, 1], 'VALID', True, is_training) # B*N*1*32
    f_layer_drop = helper_tf_util.dropout(f_layer_fc2, keep_prob=0.5, is_training=is_training, scope='dp1')
    f_layer_fc3 = helper_tf_util.conv2d(f_layer_drop, self.config.num_classes, [1, 1], 'fc', [1, 1], 'VALID', False,
                                        is_training, activation_fn=None)    # B*N*1*13
    f_out = tf.squeeze(f_layer_fc3, [2])
    return f_out    # B*N*class

loss

如果指定了要忽略的类型,在开始计算loss前要处理这些点。

#####################################################################
# Ignore the invalid point (unlabeled) when calculating the loss #
#####################################################################
with tf.variable_scope('loss'):
    self.logits = tf.reshape(self.logits, [-1, config.num_classes])
    self.labels = tf.reshape(self.labels, [-1])
    # Boolean mask of points that should be ignored
    ignored_bool = tf.zeros_like(self.labels, dtype=tf.bool)
    for ign_label in self.config.ignored_label_inds:
        ignored_bool = tf.logical_or(ignored_bool, tf.equal(self.labels, ign_label))
    # Collect logits and labels that are not ignored
    valid_idx = tf.squeeze(tf.where(tf.logical_not(ignored_bool)))
    valid_logits = tf.gather(self.logits, valid_idx, axis=0)
    valid_labels_init = tf.gather(self.labels, valid_idx, axis=0)
    # Reduce label values in the range of logit shape
    reducing_list = tf.range(self.config.num_classes, dtype=tf.int32)
    inserted_value = tf.zeros((1,), dtype=tf.int32)
    for ign_label in self.config.ignored_label_inds:
        reducing_list = tf.concat([reducing_list[:ign_label], inserted_value, reducing_list[ign_label:]], 0)
    valid_labels = tf.gather(reducing_list, valid_labels_init)
    self.loss = self.get_loss(valid_logits, valid_labels, self.class_weights)

这里的pre_cal_weights是预计算出的每个类别的点数,将其作为反权重乘以对应分类的loss可以防止 “当点云中某个类别特别多,神经网络就只选择预测那个类别以达到一个局部最优解” 的现象。

    def get_loss(self, logits, labels, pre_cal_weights):
        # calculate the weighted cross entropy according to the inverse frequency 根据反频率计算加权交叉熵
        class_weights = tf.convert_to_tensor(pre_cal_weights, dtype=tf.float32)
        one_hot_labels = tf.one_hot(labels, depth=self.config.num_classes)  # N*C
        weights = tf.reduce_sum(class_weights * one_hot_labels, axis=1)  # N * sum(C*W)
        unweighted_losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=one_hot_labels)   # 计算交叉熵
        weighted_losses = unweighted_losses * weights   # N * sum(C*W)*L
        output_loss = tf.reduce_mean(weighted_losses)
        return output_loss

优化器配置

最后是配置优化器,各种显示参数。

        with tf.variable_scope('optimizer'):
            self.learning_rate = tf.Variable(config.learning_rate, trainable=False, name='learning_rate')
            self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
            self.extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        with tf.variable_scope('results'):
            self.correct_prediction = tf.nn.in_top_k(valid_logits, valid_labels, 1)
            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
            self.prob_logits = tf.nn.softmax(self.logits)

            tf.summary.scalar('learning_rate', self.learning_rate)
            tf.summary.scalar('loss', self.loss)
            tf.summary.scalar('accuracy', self.accuracy)

        my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
        self.saver = tf.train.Saver(my_vars, max_to_keep=100)
        c_proto = tf.ConfigProto()
        c_proto.gpu_options.allow_growth = True
        self.sess = tf.Session(config=c_proto)
        self.merged = tf.summary.merge_all()
        self.train_writer = tf.summary.FileWriter(config.train_sum_dir, self.sess.graph)
        self.sess.run(tf.global_variables_initializer())

train

    def train(self, dataset):
        log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)
        self.sess.run(dataset.train_init_op)
        while self.training_epoch < self.config.max_epoch:
            t_start = time.time()
            try:
                ops = [self.train_op,
                       self.extra_update_ops,
                       self.merged,
                       self.loss,
                       self.logits,
                       self.labels,
                       self.accuracy]
                _, _, summary, l_out, probs, labels, acc = self.sess.run(ops, {self.is_training: True})
                self.train_writer.add_summary(summary, self.training_step)
                t_end = time.time()
                if self.training_step % 50 == 0:
                    message = 'Step {:08d} L_out={:5.3f} Acc={:4.2f} ''---{:8.2f} ms/batch'
                    log_out(message.format(self.training_step, l_out, acc, 1000 * (t_end - t_start)), self.Log_file)
                self.training_step += 1

            except tf.errors.OutOfRangeError:

                m_iou = self.evaluate(dataset)
                if m_iou > np.max(self.mIou_list):
                    # Save the best model
                    snapshot_directory = join(self.saving_path, 'snapshots')
                    makedirs(snapshot_directory) if not exists(snapshot_directory) else None
                    self.saver.save(self.sess, snapshot_directory + './snap', global_step=self.training_step)
                self.mIou_list.append(m_iou)
                log_out('Best m_IoU is: {:5.3f}'.format(max(self.mIou_list)), self.Log_file)

                self.training_epoch += 1
                self.sess.run(dataset.train_init_op)
                # Update learning rate
                op = self.learning_rate.assign(tf.multiply(self.learning_rate,
                                                           self.config.lr_decays[self.training_epoch]))
                self.sess.run(op)
                log_out('****EPOCH {}****'.format(self.training_epoch), self.Log_file)

            except tf.errors.InvalidArgumentError as e:

                print('Caught a NaN error :')
                print(e.error_code)
                print(e.message)
                print(e.op)
                print(e.op.name)
                print([t.name for t in e.op.inputs])
                print([t.name for t in e.op.outputs])

                a = 1 / 0

        print('finished')
        self.sess.close()

你可能感兴趣的:(python,深度学习,机器学习,tensorflow,点云分类)