- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- PyTorch基础知识讲解(一)完整训练流程示例
苏雨流丰
机器学习pytorch人工智能python机器学习深度学习
文章目录Tutorial1.数据处理2.网络模型定义3.损失函数、模型优化、模型训练、模型评价4.模型保存、模型加载、模型推理Tutorial大多数机器学习工作流程涉及处理数据、创建模型、优化模型参数和保存训练好的模型。本教程向你介绍一个用PyTorch实现的完整的ML工作流程,并提供链接来了解这些概念中的每一个。我们将使用FashionMNIST数据集来训练一个神经网络,预测输入图像是否属于以下
- AI进化论:从图灵测试到智能革命的临界点
A达峰绮
人工智能数据处理经验分享AIGCAI人工智能
智能觉醒的起源密码(1943-2010)在曼彻斯特维多利亚大学的实验室里,1948年"Baby"计算机完成人类首个存储程序运行实验时,艾伦·图灵正在构思《计算机器与智能》。这篇划时代论文提出的"模仿游戏"测试,为人工智能奠定了哲学基础。1956年达特茅斯会议上,麦卡锡正式提出"人工智能"概念,当时学界乐观预测"二十年内机器将完成人类所有工作"。神经网络的发展轨迹充满戏剧性:1958年罗森布拉特发明
- 大语言模型学习路线:从入门到实战
大模型官方资料
语言模型学习人工智能产品经理自然语言处理搜索引擎
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习与目标检测系列(六) 本文约(4.5万字) | 全面解读复现ResNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorch人工智能ResNet残差连接残差网络
文章目录解读Abstract—摘要翻译精读主要内容Introduction—介绍翻译精读背景RelatedWork—相关工作ResidualRepresentations—残差表达翻译精读主要内容ShortcutConnections—短路连接翻译精读主要内容DeepResidualLearning—深度残差学习ResidualLearning—残差学习翻译精读ResNet目的以前方法本文改进本质
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 使用 Milvus 进行向量数据库管理与实践
qahaj
milvus数据库python
技术背景介绍在当今的AI与机器学习应用中,处理和管理大量的嵌入向量是一个常见的需求。Milvus是一个开源向量数据库,专门用于存储、索引和管理深度神经网络以及其他机器学习模型生成的大规模嵌入向量。它的高性能和易用性使其成为处理向量数据的理想选择。核心原理解析Milvus的核心功能体现在其强大的向量索引和搜索能力。它支持多种索引算法,包括IVF、HNSW等,使其能够高效地进行大规模向量的相似性搜索操
- 物理学不存在了?诺贝尔物理学奖颁给了人工智能
资讯新鲜事
人工智能
2024年10月8日,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国普林斯顿大学教授约翰·J·霍普菲尔德(JohnJ.Hopfield)和加拿大多伦多大学教授杰弗里·E·辛顿(GeoffreyE.Hinton),以表彰他们“在人工神经网络机器学习方面的基础性发现和发明”。辛顿在接受电话采访时表示:“完全没想到”。实话实说,在结果出来前,大家也都没想到。因为在外界预测里,今年的诺贝尔物理学奖
- 计算机视觉技术探索:美颜SDK如何利用深度学习优化美颜、滤镜功能?
美狐美颜sdk
美颜SDK美颜API直播美颜SDK计算机视觉深度学习直播美颜SDK美颜sdk第三方美颜sdk美颜api
时下,计算机视觉+深度学习正在重塑美颜技术,通过智能人脸检测、AI滤镜、深度美肤、实时优化等方式,让美颜效果更加自然、精准、个性化。那么,美颜SDK如何结合深度学习来优化美颜和滤镜功能?本文将深入解析AI在美颜技术中的应用,并探讨其未来发展趋势。一、深度学习如何赋能美颜SDK?1.AI人脸检测与关键点识别:精准捕捉五官在美颜过程中,首先需要精准检测人脸位置和五官特征点,确保美颜效果不会失真。深度学
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- 利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析
快撑死的鱼
Python算法精解python深度学习开发语言
利用Python和深度学习方法实现手写数字识别的高精度解决方案——从数据预处理到模型优化的全流程解析在人工智能的众多应用领域中,手写数字识别是一项经典且具有重要实际应用价值的任务。随着深度学习技术的飞速发展,通过构建和训练神经网络模型,手写数字识别的精度已经可以达到99%以上。本文将以Python为主要编程语言,结合深度学习的核心技术,详细解析手写数字识别的实现过程,并探讨如何进一步优化模型以提高
- 强化学习中的深度卷积神经网络设计与应用实例
数字扫地僧
计算机视觉cnn人工智能神经网络
I.引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,通过与环境的交互来学习最优策略。深度学习,特别是深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNNs)的引入,为强化学习在处理高维度数据方面提供了强大工具。本文将探讨强化学习中深度卷积神经网络的设计原则及其在不同应用场景中的实例。II.深度卷积神经网络在强化学习中的
- 腾讯云大模型知识引擎与DeepSeek:打造懒人专属的谷歌浏览器翻译插件
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算
摘要:随着人工智能技术的飞速发展,越来越多的前沿技术和工具已走入日常生活。翻译工具作为跨语言沟通的桥梁,一直处于技术创新的风口浪尖。本文探讨了腾讯云大模型知识引擎与DeepSeek结合谷歌浏览器插件的可能性,旨在为用户提供一种便捷、高效的翻译体验。通过应用深度学习、自然语言处理和知识图谱技术,该插件不仅能实时翻译网页内容,还能根据上下文进行智能推荐,实现精准的语境转换。本文将详细阐述其设计思路、技
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(二)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(二)5.跨模态检索系统应用场景5.1图文匹配系统的实际应用应用领域具体场景优势电子商务商品图像搜索、视觉购物用户可以上传图片查找相似商品或使用文本描述查找商品智能媒体内容推荐、图片库搜索通过内容的语义理解提供更精准的推荐和搜索社交网络基于内容的帖子推荐理解用户兴趣,提供更相关的内容推荐教育技术多模态教学资源检索教师和学生可以更
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- 10.2 如何解决从复杂 PDF 文件中提取数据的问题?
墨染辉
大语言模型pdf
10.2如何解决从复杂PDF文件中提取数据的问题?解决方案:嵌入式表格检索解释:嵌入式表格检索是一种专门针对从复杂PDF文件中的表格提取数据的技术。它结合了表格识别、解析和语义理解,使得从复杂结构的表格中检索信息成为可能。具体步骤:表格检测和识别:目标:在PDF页面中准确地定位和识别表格区域。方法:使用计算机视觉和深度学习技术,如卷积神经网络(CNN)或其他先进的图像处理算法。效果:能够检测出页面
- TensorFlow深度学习实战项目:从入门到精通
点我头像干啥
Ai深度学习tensorflow人工智能
引言深度学习作为人工智能领域的一个重要分支,近年来取得了显著的进展。TensorFlow作为Google开源的深度学习框架,因其强大的功能和灵活的架构,成为了众多开发者和研究者的首选工具。本文将带领大家通过一个实战项目,深入理解TensorFlow的使用方法,并掌握深度学习的基本流程。1.TensorFlow简介1.1TensorFlow是什么?TensorFlow是一个开源的机器学习框架,由Go
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 【深度学习】DeepSeek模型介绍与部署
Nerous_
深度学习深度学习人工智能
原文链接:DeepSeek-V31.介绍DeepSeek-V3,一个强大的混合专家(MoE)语言模型,拥有671B总参数,其中每个token激活37B参数。为了实现高效推理和成本效益的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3首次提出了无辅助损失的负载平衡策略,并设置了多to
- 【深度学习】 PyTorch一文详解
Nerous_
深度学习深度学习pytorch人工智能机器学习python
“PyTorchisadeeplearningframeworkthatprioritizessimplicityandflexibility,makingitthego-tochoiceforbothresearchersanddevelopers.”—Anonymous1.PyTorch简介1.1PyTorch的背景与发展PyTorch是由Facebook人工智能研究院(FAIR)开发的一个开
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- QKeras、Brevitas和QONNX量化工具对比
kanhao100
笔记深度学习边缘计算
QKeras、Brevitas和QONNX量化工具对比一、引言在深度学习模型部署领域,量化技术已成为提升模型执行效率的关键手段。通过将浮点权重转换为低精度表示,量化能显著减小模型体积、降低内存占用并加速推理过程。对于资源受限的设备(如移动设备、嵌入式系统和边缘计算设备),量化技术尤为重要。本文深入对比三款主流量化工具:QKeras、Brevitas和QONNX,从用户实际应用角度剖析它们的技术特点
- Umi-OCR:解锁高效文字识别的新时代
水熠芝Dark-Haired
Umi-OCR:解锁高效文字识别的新时代Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda项目介绍在数字化浪潮席卷全球的今天,文字识别技术已成为提升工作效率和生活质量的关键工具。Umi-OCR,作为一款基于深度学习技术的开源文字识别工具,凭借其强大的功能和高效的性能,迅速成为众多用户的首选。无
- Umi-OCR:一款强大而高效的文字识别工具
裘心国Trent
Umi-OCR:一款强大而高效的文字识别工具Umi-OCR一款强大而高效的文字识别工具项目地址:https://gitcode.com/Resource-Bundle-Collection/6adda介绍Umi-OCR是一款基于深度学习技术的开源文字识别工具,特别适合日常办公、学术研究及数据分析等场景。它能有效解决将图像中的文字快速转化为可编辑文本的需求,极大提升工作效率。此工具依托于先进的计算机
- 自动语音识别(ASR):技术、应用与未来
ajie1117
语音识别人工智能
自动语音识别(ASR):技术、应用与未来1.ASR简介自动语音识别(ASR,AutomaticSpeechRecognition)是一种将语音转换为文本的技术。它利用人工智能(AI)、深度学习和自然语言处理(NLP)技术来识别和理解人类的语言,使计算机能够与人类进行更自然的交互。2.ASR的工作原理ASR的核心流程通常包括以下几个步骤:语音信号采集:通过麦克风或其他设备获取音频数据。预处理:去除噪
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 关于神经网络中的激活函数
文弱_书生
乱七八糟神经网络人工智能深度学习
激活函数(ActivationFunction)详解理解首先煮波解释一下这四个字,“函数”相信大家都不陌生,能点进来看这篇文章说明你一定经历至少长达十年的数学的摧残,关于这个概念煮波就不巴巴了,煮波主要说一下“激活”,大家可能或多或少的看过类似于古装,玄幻,修仙等类型的小说或者电视剧。剧中的主角往往是天赋异禀或则什么神啊仙啊的转世,但是这一世他却被当成了普通人,指导某一时刻才会迸发出全部的能量(主
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt