从github下载的 Yolov5_DeepSort_OSNet 运行后发现无法保存视频
运行后发现文件夹成功的创建 但是文件夹下没有训练完成的视频
经过排查发现保存文件的save_vid不管怎么都是false,只有在使用摄像头时才为true。暂时不知道为什么。
运行成功,问题解决
以下为全部代码,希望有大佬可以解答一下为什么save_vid一直是false
# limit the number of cpus used by high performance libraries
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
sys.path.insert(0, './yolov5')
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import numpy as np
import cv2
import torch
import torch.backends.cudnn as cudnn
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import LoadImages, LoadStreams, VID_FORMATS
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords,
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from deep_sort.utils.parser import get_config
from deep_sort.deep_sort import DeepSort
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 deepsort root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
def detect(opt):
out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, \
project, exist_ok, update, save_crop = \
opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \
opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.exist_ok, opt.update, opt.save_crop
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
save_vid = True
# Initialize:初始化
device = select_device(opt.device)
# half precision only supported on CUDA
# 仅在 CUDA 上支持半精度
half &= device.type != 'cpu'
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Directories
# 目录
if type(yolo_model) is str: # single yolo model
exp_name = yolo_model.split(".")[0]
elif type(yolo_model) is list and len(yolo_model) == 1: # single models after --yolo_model
exp_name = yolo_model[0].split(".")[0]
else: # multiple models after --yolo_model
exp_name = "ensemble"
exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0]
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run if project name exists
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model:加载模型
model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
# 检查环境是否支持图像显示
if show_vid:
show_vid = check_imshow()
# Dataloader:数据加载器
if webcam:
show_vid = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference:设置True以加速恒定图像尺寸推断
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = len(dataset)
else:
# show_vid = check_imshow() # 手动加的 让文件不为网络格式时也可以显示推理过程
cudnn.benchmark = True # set True to speed up constant image size inference:设置True以加速恒定图像尺寸推断
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = 1
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
# initialize deepsort:初始化深度排序
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
# Create as many trackers as there are video sources:创建与视频源一样多的跟踪器
deepsort_list = []
for i in range(nr_sources):
deepsort_list.append(
DeepSort(
deep_sort_model,
device,
max_dist=cfg.DEEPSORT.MAX_DIST,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
)
)
outputs = [None] * nr_sources
# Get names and colors:获取名称和颜色
names = model.module.names if hasattr(model, 'module') else model.names
# Run tracking:运动追踪
model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference:推理
visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False
pred = model(im, augment=opt.augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
dt[2] += time_sync() - t3
# Process detections:过程检测
for i, det in enumerate(pred): # detections per image:每个图像检测
seen += 1
if webcam: # nr_sources >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
txt_file_name = p.name
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
# 文件是否以 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' 后缀结束
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=2, pil=not ascii)
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
t4 = time_sync()
outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
dt[3] += t5 - t4
# draw boxes for visualization
# 为可视化绘制框
if len(outputs[i]) > 0:
for j, (output) in enumerate(outputs[i]):
bboxes = output[0:4]
id = output[4]
cls = output[5]
conf = output[6]
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
# Write MOT compliant results to file
# 将符合 MOT 的结果写入文件
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
bbox_top, bbox_w, bbox_h, -1, -1, -1, i))
if save_vid or save_crop or show_vid: # Add bbox to image
c = int(cls) # integer class
label = f'{id:0.0f} {names[c]} {conf:.2f}'
annotator.box_label(bboxes, label, color=colors(c, True))
if save_crop:
txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)')
else:
deepsort_list[i].increment_ages()
LOGGER.info('No detections')
# Stream results
# 串流结果
im0 = annotator.result()
if show_vid:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_vid:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_vid:
s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(yolo_model) # update model (to fix SourceChangeWarning)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--yolo_model', nargs='+', type=str, default=ROOT / 'yolov5/weights/yolov5x.pt', help='model.pt path(s)')
parser.add_argument('--deep_sort_model', type=str, default='deep_sort/deep/checkpoint/osnet_x1_0_imagenet.pth')
parser.add_argument('--source', type=str, default='video/test_person.mp4', help='source') # file/folder, 0 for webcam
# parser.add_argument('--source', type=str, default='0', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--evaluate', action='store_true', help='augmented inference')
parser.add_argument("--config_deepsort", type=str, default="deep_sort/configs/deep_sort.yaml")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detection per image')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
with torch.no_grad():
detect(opt)