给自己做笔记,帮助自己分辨一些图论中关于刚性图的概念和与仿射编队的一些概念集合。根据论文自己的一些通俗的理解
G G G:图
V V V:顶点集
E E E:边集
Generic [1]: “We say a configuration q q q is generic if the entries of q q q are algebraically independent over the rational numbers, namely, there is no non-zero polynomial with rational coefficients that vanishes at the entries of q q q.”
几何的:简单来说,二维情况下图上没有共线的点。
Equivalent [2]: Given a framework ( G , q ) \left( G,q \right) (G,q) in R d {{\mathbb{R}}^{d}} Rd , if there exists another framework [\left( G,p \right)] in R d {{\mathbb{R}}^{d}} Rd such that ∥ p i − p j ∥ = ∥ q i − q j ∥ \left\| {{p}_{i}}-{{p}_{j}} \right\|=\left\| {{q}_{i}}-{{q}_{j}} \right\| ∥pi−pj∥=∥qi−qj∥ , ∀ ( i , j ) ∈ E \forall \left( i,j \right)\in E ∀(i,j)∈E, then we say that (G,p) is equivalent to (G,q).
Congruent [2]: if ∥ p i − p j ∥ = ∥ q i − q j ∥ \left\| {{p}_{i}}-{{p}_{j}} \right\|=\left\| {{q}_{i}}-{{q}_{j}} \right\| ∥pi−pj∥=∥qi−qj∥, ∀ ( i , j ) ∈ V \forall \left( i,j \right)\in V ∀(i,j)∈V .
简单来说,等价只保证两个图所有边等长,全等要求任意两点距离相等,因此还要求没有相连的两个点距离也相等,就条件强度而言全等更强力。
C o n g r u e n t > E q u i v a l e n t Congruent>Equivalent Congruent>Equivalent
Rigid [3]: “Roughly speaking, a formation is rigid if its only smooth motions are those corresponding to translation or rotation of the whole formation.”
刚性:简单来说,和刚体类似,刚性图只能被整体的移动和旋转。
Minimally Rigid [3] : "A formation is minimally rigid if it is rigid and if no single interagent distance constraint can be removed without causing the formation to lose rigidity. "
最小刚性:构成的刚性图使用的边是最少的,二维边数量为 2 ∗ V − 3 2*V-3 2∗V−3条。
Globally Rigid [2]: “if all the frameworks ( G , p ) \left( G,p \right) (G,p) in R d {{\mathbb{R}}^{d}} Rd equivalent to ( G , q ) \left( G,q \right) (G,q) are congruent to ( G , q ) \left( G,q \right) (G,q) .”
Globally Rigid [3]: “globally rigid if and only if any two formations corresponding to the distance data differ by a combination of translation, rotation, and reflection.”
全局刚性:简单来说,图是刚性的,且没有翻转歧义。
翻 转 歧 义 [ 3 ] 翻转歧义[3] 翻转歧义[3]
Universally rigid [2]: “if all the frameworks ( G , p ) \left( G,p \right) (G,p) in any R D ⊃ R d {{\mathbb{R}}^{D}}\supset {{\mathbb{R}}^{d}} RD⊃Rd equivalent to ( G , q ) \left( G,q \right) (G,q) are congruent to ( G , q ) \left( G,q \right) (G,q).”
通用刚性:简单来说,一个图是通用刚性表示其不但在 d d d维空间中是全局刚性的,且在任意更高维的的 D > d D>d D>d维空间中仍然是全局刚性的。
Affinely Span [4]: The dimension of A ( γ ) A\left( \gamma \right) A(γ) equals d 2 + d {{d}^{2}}+d d2+d if and only if { r i } i = 1 , … , n {{\left\{ {{r}_{i}} \right\}}_{i=1,\ldots ,n}} {ri}i=1,…,n affinely span R d {{\mathbb{R}}^{d}} Rd .
仿射生成:点集 V V V经过 d 2 + d {{d}^{2}}+d d2+d维空间的仿射变换后,其像张成的空间是 d d d维的。
应力矩阵表征了一个构型或者说是图的内部力平衡关系,满足:
Ω = ω i j ∑ j = 1 n ω i j ( q i ∗ − q j ∗ ) i = 1 , … , n \begin{aligned} & \Omega ={{\omega }_{ij}} \\ & \begin{matrix} \sum\limits_{j=1}^{n}{{{\omega }_{ij}}\left( q_{i}^{*}-q_{j}^{*} \right)} & i=1,\ldots ,n \\ \end{matrix} \\ \end{aligned} Ω=ωijj=1∑nωij(qi∗−qj∗)i=1,…,n有一些性质:
[1] Q. Yang, Z. Sun, M. Cao, H. Fang, J. Chen. “Stress-matrix-based formation scaling control” Automatica, 2019.
[2] Q. Yang, M. Cao, H. Fang, J. Chen. “Constructing Universally Rigid Tensegrity Frameworks With Application in Multiagent Formation Control” IEEE Transaction on Automatic Control, 2019.
[3] B. D. O. Anderson, B. F. C. Yu, and J. M. Hendrickx, “Rigid graph control architectures for autonomous formations,” IEEE Control System Magazine, 2008.
[4] S. Zhao, “Affine Formation Maneuver Control of Multiagent Systems,” IEEE Transaction on Automatic Control, 2018.