Python CV 视觉图像数据标签(xml)在原图的可视化操作

CV离不开数据集,对于拿到公开的数据集抑或是人家整理的数据集时,我们有必要清楚现有的数据集标签质量如何。因此,我们可以用以下脚本去对我们现有的数据标签在原图上进行可视化操作。

本人基于企业实际工程项目,以.xml标签数据可视化例子来验证,整理代码如下:

  1. 给出我的数据路径,以便大家阅读以及改写代码

VOCdevkit
    L Annotation
        L 000.xml
    L ImageSets
    L JPEGImages
        L 000.jpg

  1. 代码如下(适用于#Python #Pytorch)
import xml.etree.ElementTree as ET  # 读取xml。
import os
from PIL import Image, ImageDraw, ImageFont


def parse_rec(filename):
    tree = ET.parse(filename)  # 解析读取xml函数
    objects = []
    img_dir = []
    for xml_name in tree.findall('filename'):
        img_path = os.path.join(pic_path, xml_name.text)
        img_dir.append(img_path)
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects, img_dir


# 可视化
def visualise_gt(objects, img_dir):
    for id, img_path in enumerate(img_dir):
        img_path = img_path + '.jpg'
        img = Image.open(img_path)
        draw = ImageDraw.Draw(img)
        for a in objects:
            xmin = int(a['bbox'][0])
            ymin = int(a['bbox'][1])
            xmax = int(a['bbox'][2])
            ymax = int(a['bbox'][3])
            label = a['name']
            draw.rectangle((xmin, ymin, xmax, ymax), fill=None, outline=(0, 255, 0), width=2)
            draw.text((xmin - 10, ymin - 15), label, fill=(0, 255, 0), font=font)  # 利用ImageDraw的内置函数,在图片上写入文字
        img.show()


fontPath = "C:\Windows\Fonts\Consolas\consola.ttf"  # 字体路径
# root = 'F:/dataset/AQM'
root = './VOCdevkit/VOC2007'
ann_path = os.path.join(root, 'Annotations')  # xml文件所在路径
pic_path = os.path.join(root, 'JPEGImages')  # 样本图片路径

font = ImageFont.truetype(fontPath, 16)

for filename in os.listdir(ann_path):
    xml_path = os.path.join(ann_path, filename)
    object, img_dir = parse_rec(xml_path)
    visualise_gt(object, img_dir)

搞定!撒花!
有学习需要的欢迎交流!

你可能感兴趣的:(项目篇,python,xml,深度学习,pytorch,人工智能)