class RandomResize(object):
def __init__(self, cfg):
self.image_short_size = 768
self.image_max_size = 768
def __call__(self, data_dict):
img_ori = data_dict["image"]
bboxes = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
bbox_idx = data_dict["crop_bbox_idx"]
bboxes = bboxes.astype(np.float32).copy()
keypoints = keypoints.astype(np.float32).copy()
availability = availability.copy()
scale_max = min(self.image_short_size / min(img_ori.shape[:2]), self.image_max_size / max(img_ori.shape[:2]))
scale_max = min(2.5, scale_max)
scale_min = .6 * scale_max
scale = np.random.uniform(scale_min, scale_max)
img_resized = cv2.resize(img_ori, (0, 0), fx=scale, fy=scale)
mask_miss_resized = cv2.resize(mask_miss, (0, 0), fx=scale, fy=scale)
bboxes[:, :4] *= scale
keypoints *= scale
data_dict["image"] = img_resized
data_dict["bboxes"] = bboxes
data_dict["keypoints"] = keypoints
data_dict["availability"] = availability
data_dict["mask_miss"] = mask_miss_resized
return data_dict
第一种方案,已经试验过,有效
class RandomBGRRGBInverse(object):
def __init__(self, cfg):
pass
def __call__(self, data_dict):
if np.random.random() > .5:
data_dict["image"] = data_dict["image"][:, :, ::-1].copy()
return data_dict
第二种方案,已经试验过,有效
#随机通道变换
class ShuffleRgb(object):
def __init__(self,probability):
"""
random_shuffle_rgb_channel
"""
self.probability=probability
def __call__(self, data_dict):
org_img = data_dict["image"]
if random.uniform(0, 1) < self.probability:
random_num = random.randint(0, 5)
r, g, b = cv2.split(org_img)
if random_num == 0:
new_img = cv2.merge([r, b, g])
elif random_num == 1:
new_img = cv2.merge([g, r, b])
elif random_num == 2:
new_img = cv2.merge([g, b, r])
elif random_num == 3:
new_img = cv2.merge([b, r, g])
elif random_num == 4:
new_img = cv2.merge([b, g, r])
elif random_num == 5:
new_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2GRAY)
new_img = cv2.cvtColor(new_img, cv2.COLOR_GRAY2RGB)
else:
new_img=org_img
else:
new_img=org_img
data_dict["image"]=new_img
return data_dict
注意:config.TRAIN.TRANSFORM_PARAMS.max_affine_xy_ratio=0.3,如何设太大,内容会丢失,所以只支持缩小。
class RandomAffineTransform(object):
def __init__(self, config):
self.max_affine_xy_ratio = config.TRAIN.TRANSFORM_PARAMS.max_affine_xy_ratio
def __call__(self, data_dict):
img_ori = data_dict["image"]
bbox = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
h, w, c = img_ori.shape
try:
assert h >0 and w > 0
except Exception as e:
import logging
logging.exception(e)
src_points = np.array([[0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1]])
new_h=int(self.max_affine_xy_ratio * h)
new_w=int(self.max_affine_xy_ratio * w)
if new_h<1:
rdh = lambda: np.random.randint(0, h)
else:
rdh = lambda: np.random.randint(0, new_h)
if new_w<1:
rdw = lambda: np.random.randint(0, w)
else:
rdw = lambda: np.random.randint(0, new_w)
dst_points = np.array([[rdw(), rdh()], [w - 1 - rdw(), rdh()], [w - 1 - rdw(), h - 1 - rdh()], [rdw(), h - 1 - rdh()]])
H, _ = cv2.findHomography(src_points, dst_points, cv2.LMEDS)
if keypoints.shape[1] >= 1:
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
assert bbox.shape.__len__() == 2
assert bbox.shape[1] == 4
assert keypoints.shape.__len__() == 3
assert keypoints.shape[2] == 2
assert availability.shape.__len__() == 2
image_transformed = cv2.warpPerspective(img_ori, H, (img_ori.shape[1], img_ori.shape[0]))
mask_miss_transformed = cv2.warpPerspective(mask_miss, H, (img_ori.shape[1], img_ori.shape[0]))
keypoints_dst = cv2.perspectiveTransform(keypoints, H)
data_dict["image"] = image_transformed
data_dict["bboxes"] = bbox
data_dict["keypoints"] = keypoints_dst.reshape(keypoints.shape)
data_dict["availability"] = availability
data_dict["mask_miss"] = mask_miss_transformed
return data_dict
提示:第一种,只有亮度变化,已经实验过,有效
class brightnessJust():
def __init__(self, config):
self.alpha=config.BrightnessJust.alpha
self.beta=config.BrightnessJust.alpha
def __call__(self, data_dict):
gamma=np.random.randint(0,127)
src2=np.uint8(np.zeros([data_dict["image"].shape[0],data_dict["image"].shape[1],data_dict["image"].shape[2]]))
data_dict["image"]=cv2.addWeighted(data_dict["image"],self.alpha,src2,self.beta,gamma)
return data_dict
提示:第二种,RGB空间亮度、对比度调节,已经实验过,有效
class RandomBrightnessAndContrast(object):
def __init__(self, probability=0.1,alpha=(7,14), beta=(-20,20)):
'''
cnum=contrast 对比度
bunm=brightness 图像亮度
'''
self.probability=probability
self.alpha_lower = alpha[0]
self.alpha_upper = alpha[1]
self.beta_lower = beta[0]
self.beta_upper = beta[1]
self.channel_process=True #在通道上处理
def __call__(self, data_dict):
image=data_dict['image']
if random.uniform(0, 1) < self.probability:
image = np.float32(image)
cnum = random.randint( self.alpha_lower,self.alpha_upper)/10
bnum = random.randint(self.beta_lower,self.beta_upper)
if self.channel_process:
bImg, gImg, rImg = cv2.split(image)
bImg = cnum * bImg + bnum
gImg = cnum * gImg + bnum
rImg = cnum * rImg + bnum
imgMerge = cv2.merge([bImg, gImg, rImg])
image = np.uint8(np.clip(imgMerge, 0, 255))
else:
imgMerge = cnum * image + bnum
image = np.uint8(np.clip(imgMerge, 0, 255))
data_dict['image']=image
return data_dict
提示:第三种,RGB空间亮度、对比度调节,基于像素点的调节。已经实验过,有效,但是特别慢,建议改成矩阵运算
class RandomBrightnessAndContrastPixel(object):
def __init__(self,probability=0.1):
'''
self.cnum=contrast 对比度
self.bunm=brightness 图像亮度
'''
self.probability=probability
def __call__(self, data_dict):
if random.uniform(0, 1) < self.probability:
image=data_dict['image']
cnum=random.randint(10,20)
bnum=random.randint(10,100)
cimg = np.ones((image.shape[0], image.shape[1], 3), dtype=np.uint8)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
cimg = 0.1 * cnum * image[i, j] + bnum
# cimg[i, j] = [int(ele) if ele < 255 else 255 for ele in lst]
cimg=np.clip(cimg,0,255)
data_dict['image']=cimg
return data_dict
class RandomCrop(object):
def __init__(self, cfg):
self.center_perterb_max = cfg.TRAIN.TRANSFORM_PARAMS.center_perterb_max # type: float
self.crop_size_x = cfg.TRAIN.TRANSFORM_PARAMS.crop_size_x
self.crop_size_y = cfg.TRAIN.TRANSFORM_PARAMS.crop_size_y
self.pad_value = cfg.TRAIN.TRANSFORM_PARAMS.PAD_VALUE
def __call__(self, data_dict):
img_ori = data_dict["image"]
bboxes = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
bbox_idx = data_dict["crop_bbox_idx"]
bboxes = bboxes.copy()
keypoints = keypoints.copy()
availability = availability.copy()
center_x = np.random.randint(0, img_ori.shape[1])
center_y = np.random.randint(0, img_ori.shape[0])
center_x = int(np.round(center_x))
center_y = int(np.round(center_y))
start_x = max(center_x - self.crop_size_x // 2, 0)
start_y = max(center_y - self.crop_size_y // 2, 0)
end_x = min(center_x + self.crop_size_x // 2, img_ori.shape[1])
end_y = min(center_y + self.crop_size_y // 2, img_ori.shape[0])
offset_x = center_x - self.crop_size_x // 2
offset_y = center_y - self.crop_size_y // 2
image_cropped = img_ori[start_y:end_y, start_x:end_x]
image_cropped_padded = np.ones(shape=(self.crop_size_y, self.crop_size_x, img_ori.shape[2]), dtype=np.float32) * self.pad_value
dst_start_x = start_x - offset_x
dst_start_y = start_y - offset_y
dst_end_x = dst_start_x + image_cropped.shape[1]
dst_end_y = dst_start_y + image_cropped.shape[0]
image_cropped_padded[dst_start_y:dst_end_y, dst_start_x:dst_end_x] = image_cropped
mask_miss_cropped = mask_miss[start_y:end_y, start_x:end_x]
mask_miss_cropped_padded = np.zeros(shape=(self.crop_size_y, self.crop_size_x), dtype=np.float32)
mask_miss_cropped_padded[dst_start_y:dst_end_y, dst_start_x:dst_end_x] = mask_miss_cropped
bboxes[:, (0, 2)] -= offset_x
bboxes[:, (1, 3)] -= offset_y
keypoints[:, :, 0] -= offset_x
keypoints[:, :, 1] -= offset_y
for m in range(keypoints.shape[0]):
for n in range(keypoints.shape[1]):
x, y = keypoints[m, n]
if not (0 <= x < image_cropped_padded.shape[1] and 0 <= y < image_cropped_padded.shape[0]):
availability[m, n] = 0
data_dict["image"] = image_cropped_padded
data_dict["bboxes"] = bboxes
data_dict["keypoints"] = keypoints
data_dict["availability"] = availability
data_dict["crop_bbox_idx"] = bbox_idx # to generate mask.
data_dict["mask_miss"] = mask_miss_cropped_padded
return data_dict
class RandomCenterCrop(object):
def __init__(self, cfg):
self.center_perterb_max = cfg.TRAIN.TRANSFORM_PARAMS.center_perterb_max # type: float
self.crop_size_x = cfg.TRAIN.TRANSFORM_PARAMS.crop_size_x
self.crop_size_y = cfg.TRAIN.TRANSFORM_PARAMS.crop_size_y
self.pad_value = cfg.TRAIN.TRANSFORM_PARAMS.PAD_VALUE
def __call__(self, data_dict):
img_ori = data_dict["image"]
bboxes = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
bbox_idx = data_dict["crop_bbox_idx"]
bboxes = bboxes.copy()
keypoints = keypoints.copy()
availability = availability.copy()
bbox = bboxes[bbox_idx]
center_x = .5 * (bbox[0] + bbox[2])
center_y = .5 * (bbox[1] + bbox[3])
center_x += (np.random.random() * 2 - 1) * self.center_perterb_max
center_y += (np.random.random() * 2 - 1) * self.center_perterb_max
center_x = int(np.round(center_x))
center_y = int(np.round(center_y))
start_x = max(center_x - self.crop_size_x // 2, 0)
start_y = max(center_y - self.crop_size_y // 2, 0)
end_x = min(center_x + self.crop_size_x // 2, img_ori.shape[1])
end_y = min(center_y + self.crop_size_y // 2, img_ori.shape[0])
offset_x = center_x - self.crop_size_x // 2
offset_y = center_y - self.crop_size_y // 2
image_cropped = img_ori[start_y:end_y, start_x:end_x]
image_cropped_padded = np.ones(shape=(self.crop_size_y, self.crop_size_x, img_ori.shape[2]), dtype=np.float32) * self.pad_value
dst_start_x = start_x - offset_x
dst_start_y = start_y - offset_y
dst_end_x = dst_start_x + image_cropped.shape[1]
dst_end_y = dst_start_y + image_cropped.shape[0]
image_cropped_padded[dst_start_y:dst_end_y, dst_start_x:dst_end_x] = image_cropped
mask_miss_cropped = mask_miss[start_y:end_y, start_x:end_x]
mask_miss_cropped_padded = np.zeros(shape=(self.crop_size_y, self.crop_size_x), dtype=np.float32)
mask_miss_cropped_padded[dst_start_y:dst_end_y, dst_start_x:dst_end_x] = mask_miss_cropped
bboxes[:, (0, 2)] -= offset_x
bboxes[:, (1, 3)] -= offset_y
keypoints[:, :, 0] -= offset_x
keypoints[:, :, 1] -= offset_y
for m in range(keypoints.shape[0]):
for n in range(keypoints.shape[1]):
x, y = keypoints[m, n]
if not (0 <= x < image_cropped_padded.shape[1] and 0 <= y < image_cropped_padded.shape[0]):
availability[m, n] = 0
data_dict["image"] = image_cropped_padded
data_dict["bboxes"] = bboxes
data_dict["keypoints"] = keypoints
data_dict["availability"] = availability
data_dict["crop_bbox_idx"] = bbox_idx # to generate mask.
data_dict["mask_miss"] = mask_miss_cropped_padded
return data_dict
class RandomScale(object):
def __init__(self, cfg):
self.scale_min = cfg.TRAIN.TRANSFORM_PARAMS.scale_min
self.scale_max = cfg.TRAIN.TRANSFORM_PARAMS.scale_max
self.crop_size_y = cfg.TRAIN.TRANSFORM_PARAMS.resize_base_size_y
self.target_dist = cfg.TRAIN.TRANSFORM_PARAMS.target_dist
def __call__(self, data_dict):
img_ori = data_dict["image"]
bboxes = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
bbox_idx = data_dict["crop_bbox_idx"]
bboxes = bboxes.astype(np.float32).copy()
keypoints = keypoints.astype(np.float32).copy()
availability = availability.copy()
if np.random.random() > .5:
scale_multiplier = np.random.random() * (self.scale_max - self.scale_min) + self.scale_min
scale_self = (bboxes[bbox_idx][3] - bboxes[bbox_idx][1]) / self.crop_size_y
scale_abs = self.target_dist / scale_self
scale = scale_abs * scale_multiplier
else:
scale = 1
img_resized = cv2.resize(img_ori, (0, 0), fx=scale, fy=scale)
mask_miss_resized = cv2.resize(mask_miss, (0, 0), fx=scale, fy=scale)
bboxes[:, :4] *= scale
keypoints *= scale
data_dict["image"] = img_resized
data_dict["bboxes"] = bboxes
data_dict["keypoints"] = keypoints
data_dict["availability"] = availability
data_dict["mask_miss"] = mask_miss_resized
return data_dict
提示: 椒盐噪声,噪点是在(0-255)之间随机生成。能有效使用
class pepper_salt_noise(object):
def __init__(self,probability):
self.probability=probability
def __call__(self, data_dict):
image = data_dict['image']
if random.uniform(0, 1) < self.probability:
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
percetage = random.uniform(0, 0.017)
Noiseimg = image
Noisenum = int(percetage * Noiseimg.shape[0] * Noiseimg.shape[1])
if random.uniform(0, 1) < 0.5:
for i in range(Noisenum):
randx = random.randint(0, image.shape[0] - 1)
randy = random.randint(0, image.shape[1] - 1)
if random.uniform(0, 1) < 0.5:
Noiseimg[randx, randy] = [0, 0, 0]
else:
Noiseimg[randx, randy] = [255, 255, 255]
else:
Noiseimg=image
data_dict['image']=Noiseimg
return data_dict
提示:能有效使用
class PictureBlur(object):
def __init__(self,probability):
'''
滤波处理主要是让图像变得模糊,常用:高斯模糊、中值模糊、均值模糊。
卷积核一般为奇数:(3,3),(5,5),(7,7)
'''
self.probability=probability
def __call__(self, data_dict):
image=data_dict['image']
if random.uniform(0,1)<self.probability:
rnd=np.random.randint(0,4)
if rnd==0:
image=cv2.blur(image,(5,5))
elif rnd==1:
image=cv2.medianBlur(image,5)
elif rnd==3:
image=cv2.GaussianBlur(image,(5,5),0)
else:
image=image
else:
image=image
data_dict['image']=image
return data_dict
提示:可以采用多种插值方式,本次采用 双三次插值,对图片质量的压缩。能有效使用
class PictureCompression(object):
def __init__(self, probability):
self.probability = probability
def __call__(self, data_dict):
compress_rate = random.randint(1,10)/10
if random.uniform(0,1)<self.probability:
heigh, width = data_dict['image'].shape[:2]
# 双三次插值
image_resize = cv2.resize(data_dict['image'],
(int(heigh * compress_rate), int(width * compress_rate)),
interpolation=cv2.INTER_AREA)
# 双三次插值
heigh_resize, width_resize = image_resize.shape[:2]
image = cv2.resize(image_resize,
(int(heigh_resize / compress_rate), int(width_resize / compress_rate)),
interpolation=cv2.INTER_LINEAR)
data_dict['image']=image
return data_dict
提示:随机遮挡,能有效使用
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
def __init__(self, probability=0.1, sl=0.002, sh=0.05, r1=0.3, mean=(0.485, 0.456, 0.406)):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
self.area_mean_roi=False
def __call__(self, data_dict):
'''
data_dict:
img:data_dict["image"]-->h,w,c
keypoints=data_dict["keypoints"]
'''
img=data_dict['image']
img = copy.deepcopy(img)
if random.uniform(0, 1) < self.probability:
# 随机擦除1-5块
mask_numbers=random.randint(1,5)
for attempt in range(mask_numbers):
area = img.shape[0] * img.shape[1]
# 计算采样面积和采样长宽比
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.shape[1] and h < img.shape[0]:
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
if self.area_mean_roi:
# 计算该区域的平均像素
image_roi = img[x1:x1 + h, y1:y1 + w, :]
image_mean = np.mean(image_roi, axis=(0, 1)) #也可以设置随机像素擦除
else:
# 随机像素擦除
b_roi=random.uniform(0, 255)
g_roi=random.uniform(0, 255)
r_roi=random.uniform(0, 255)
image_mean = [b_roi,g_roi,r_roi]
# 设置三个通道为0
# image_mean[0] = 0
# image_mean[1] = 0
# image_mean[2] = 0
if img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = image_mean[0]
img[x1:x1 + h, y1:y1 + w, 1] = image_mean[1]
img[x1:x1 + h, y1:y1 + w, 2] = image_mean[2]
else:
img[x1:x1 + h, y1:y1 + w] = image_mean[0]
data_dict['image'] = img
return data_dict
提示:这部分数据增强的占比可以少点,能有效使用
class RGB2GRAY(object):
def __init__(self, probability=0.1):
self.probability = probability
def __call__(self, data_dict):
image=data_dict['image']
if random.uniform(0, 1) < self.probability:
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 合并为三通道,以便输入网络
# image_gray = cv2.merge([image_gray, image_gray, image_gray])
image_gray = np.stack((image_gray, image_gray, image_gray), axis=2)
data_dict['image']=image_gray
return data_dict
提示:1.config.TRAIN.TRANSFORM_PARAMS.max_rotation_degree=40;2.data_dict['image']采用cv读图;3.data_dict["keypoints"]的形状为[1,N,2],N代表多少个关键点。目前在关键点检测能正常使用。能有效使用
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# center
h, w = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated = cv2.warpAffine(image, M, (nW, nH))
return rotated
#start random rotate
class RandomRotate(object):
def __init__(self, config):
self.min_angle = -1 * config.TRAIN.TRANSFORM_PARAMS.max_rotation_degree
self.max_angle = config.TRAIN.TRANSFORM_PARAMS.max_rotation_degree
def __call__(self, data_dict):
img_ori = data_dict["image"]
bbox = data_dict["bboxes"]
keypoints = data_dict["keypoints"]
availability = data_dict["availability"]
mask_miss = data_dict["mask_miss"]
assert bbox.shape.__len__() == 2
assert bbox.shape[1] == 4
assert keypoints.shape.__len__() == 3
assert keypoints.shape[2] == 2
assert availability.shape.__len__() == 2
# rotate bbox and image
kps = np.empty(shape=(len(bbox), 4, 2), dtype=np.float32)
kps[:, 0, :] = bbox[:, (0, 1)]
kps[:, 1, :] = bbox[:, (2, 1)]
kps[:, 2, :] = bbox[:, (2, 3)]
kps[:, 3, :] = bbox[:, (0, 3)]
if np.random.random() > .5:
angle = np.random.uniform(self.min_angle, self.max_angle)
else:
angle = [0, 90, 180][np.random.randint(0, 3)]
image_rotated, mask_miss_rotated, kps_rotated, M = rotate_bound(img_ori, mask_miss, kps.reshape((-1, 2)), angle)
kps_rotated = kps_rotated.reshape(kps.shape)
bbox_rotated = np.zeros_like(bbox)
bbox_rotated[:, 0] = kps_rotated[:, :, 0].min(axis=1)
bbox_rotated[:, 1] = kps_rotated[:, :, 1].min(axis=1)
bbox_rotated[:, 2] = kps_rotated[:, :, 0].max(axis=1)
bbox_rotated[:, 3] = kps_rotated[:, :, 1].max(axis=1)
# rotate keypoints
keypoints_reshapped = keypoints.reshape(-1, 2)
keypoints_homo = np.ones(shape=(keypoints_reshapped.shape[0], 3))
keypoints_homo[:, :2] = keypoints_reshapped
keypoints_rotated = keypoints_homo.dot(M.T)
data_dict["image"] = image_rotated
data_dict["bboxes"] = bbox_rotated
data_dict["keypoints"] = keypoints_rotated.reshape(keypoints.shape)
data_dict["availability"] = availability
data_dict["mask_miss"] = mask_miss_rotated
return data_dict
下面展示一些 内联代码片
,后续不断的实验调通,会及时更新…
from __future__ import division
import cv2
from PIL import Image,ImageFilter,ImageEnhance
import numpy as np
from numpy import random
import math
import glob
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
import os
__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',"RandomErasing",
'BottomCrop', 'Normalize','Normalize_test', 'RandomSwapChannels', 'FixRandomRotate','RandomRotate', 'RandomHShift',"CenterCrop",'RandomBrightnessAndContrastPixel','RandomBrightnessAndContrast',"pepper_salt_noise",'PictureBlur', 'PictureCompression', 'RGB2GRAY',
'ExpandBorder', 'RandomResizedCrop','RandomTwelveCrop','RandomDownCrop', 'DownCrop', 'ResizedCrop','Lighter']
def ruihua(img):
src = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
kernel2 = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)
dst = cv2.filter2D(src, -1, kernel2)
image = Image.fromarray(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB))
return image
def light_up(img):
# img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
dst = np.uint8(np.clip((1.2 * img + 10), 0, 255))
image = Image.fromarray(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB))
return image
class light_down(object):
def __init__(self):
pass
def __call__(self, img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
dst = np.uint8(np.clip((0.6 * img + 10), 0, 255))
# image = Image.fromarray(cv2.cvtColor(dst, cv2.COLOR_BGR2RGB))
return dst
# def Laplas(img):
# src = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
#
# dst1 = cv2.pyrDown(src)
#
# dst2 = cv2.pyrDown(dst1)
# dst3 = cv2.pyrDown(dst2)
#
# dst4 = cv2.pyrUp(dst3)
# dst5 = cv2.pyrUp(dst4)
# dst6 = cv2.pyrUp(dst5)
#
# h1, w1, c1 = dst6.shape
# src = cv2.resize(src, (w1, h1))
# dst7 = src - dst6
# image = Image.fromarray(cv2.cvtColor(dst7, cv2.COLOR_BGR2RGB))
# return image
def rotate_nobound(image, angle, center=None, scale=1.):
(h, w) = image.shape[:2]
# if the center is None, initialize it as the center of
# the image
if center is None:
center = (w // 2, h // 2)
# perform the rotation
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, M, (w, h))
return rotated
def scale_down(src_size, size):
w, h = size
sw, sh = src_size
if sh < h:
w, h = float(w * sh) / h, sh
if sw < w:
w, h = sw, float(h * sw) / w
return int(w), int(h)
def fixed_crop(src, x0, y0, w, h, size=None):
out = src[y0:y0 + h, x0:x0 + w]
if size is not None and (w, h) != size:
out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
return out
def center_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) / 2)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def bottom_crop(src, size):
h, w = src.shape[0:2]
new_w, new_h = scale_down((w, h), size)
x0 = int((w - new_w) / 2)
y0 = int((h - new_h) * 0.75)
out = fixed_crop(src, x0, y0, new_w, new_h, size)
return out
def rotate_bound(image, angle):
# grab the dimensions of the image and then determine the
# center
h, w = image.shape[:2]
(cX, cY) = (w // 2, h // 2)
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated = cv2.warpAffine(image, M, (nW, nH))
return rotated
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img):
for t in self.transforms:
img = t(img)
return img
class pepper_salt_noise(object):
def __init__(self):
pass
def __call__(self, image):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
percetage = random.uniform(0, 0.017)
Noiseimg = image
Noisenum = int(percetage * Noiseimg.shape[0] * Noiseimg.shape[1])
for i in range(Noisenum):
randx = random.randint(0, image.shape[0] - 1)
randy = random.randint(0, image.shape[1] - 1)
if random.uniform(0, 1) < 0.5:
Noiseimg[randx, randy] = [0, 0, 0]
else:
Noiseimg[randx, randy] = [255, 255, 255]
return Noiseimg
class perspective_transformation(object):
def __init__(self, resize=50):
self.resize = resize
def __call__(self, image):
if random.random() > 0.5:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
h, w, _ = image.shape
src = np.array([[0, 0], [w-1, 0], [w-1, h-1], [0, h-1]], dtype=np.float32)
l_up_x_scale = round(random.uniform(0.0, 0.2), 3)
l_up_y_scale = round(random.uniform(0.0, 0.2), 3)
r_up_x_scale = round(random.uniform(0.8, 1), 3)
r_up_y_scale = round(random.uniform(0.0, 0.2), 3)
r_down_x_scale = round(random.uniform(0.8, 1), 3)
r_down_y_scale = round(random.uniform(0.8, 1), 3)
l_down_x_scale = round(random.uniform(0.0, 0.2), 3)
l_down_y_scale = round(random.uniform(0.8, 1), 3)
dst = np.array([[w*l_up_x_scale, h*l_up_y_scale], [w*r_up_x_scale, h*r_up_y_scale],
[w*r_down_x_scale, h*r_down_y_scale], [w*l_down_x_scale, h*l_down_y_scale]], dtype=np.float32)
transform_matrix = cv2.getPerspectiveTransform(src, dst)
warp_img = cv2.warpPerspective(image, transform_matrix, (w,h))
# image = cv2.resize(warp_img, (self.resize, self.resize))
image = cv2.resize(warp_img, (48, 26))
return image
class RandomRotate(object):
def __init__(self, angles, bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
if random.random() > 0.5:
angle = np.random.uniform(self.angles[0], self.angles[1])
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
class dog_way(object):
def __init__(self):
self.clahe_block = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5, 5))
pass
def __call__(self,img):
if random.random() > 0.5:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img = cv2.circle(img, (5, 5), 2, 50, 1)
self.clahe_block.apply(img, img)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
# print("------ dog_way ------- ", img.shape)
# print("???")
return img
class RandomBrightness(object):
def __init__(self, delta=10):
assert delta >= 0
assert delta <= 255
self.delta = delta
def __call__(self, image):
if random.randint(2):
delta = random.uniform(-self.delta, self.delta)
image = (image + delta).clip(0.0, 255.0)
# print('RandomBrightness,delta ',delta)
return image
class RandomContrast(object):
def __init__(self, lower=0.9, upper=1.05):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
# expects float image
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
# print('contrast:', alpha)
image = (image * alpha).clip(0.0,255.0)
return image
class RandomSaturation(object):
def __init__(self, lower=0.8, upper=1.2):
self.lower = lower
self.upper = upper
assert self.upper >= self.lower, "contrast upper must be >= lower."
assert self.lower >= 0, "contrast lower must be non-negative."
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(self.lower, self.upper)
image[:, :, 1] *= alpha
# print('RandomSaturation,alpha',alpha)
return image
class FixRandomRotate(object):
def __init__(self, angles=[0,90,180,270], bound=False):
self.angles = angles
self.bound = bound
def __call__(self,img):
do_rotate = random.randint(0, 4)
angle=self.angles[do_rotate]
if self.bound:
img = rotate_bound(img, angle)
else:
img = rotate_nobound(img, angle)
return img
class RandomHue(object):
def __init__(self, delta=18.0):
assert delta >= 0.0 and delta <= 360.0
self.delta = delta
def __call__(self, image):
if random.randint(2):
alpha = random.uniform(-self.delta, self.delta)
image[:, :, 0] += alpha
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
# print('RandomHue,alpha:', alpha)
return image
class ConvertColor(object):
def __init__(self, current='BGR', transform='HSV'):
self.transform = transform
self.current = current
def __call__(self, image):
if self.current == 'BGR' and self.transform == 'HSV':
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
elif self.current == 'HSV' and self.transform == 'BGR':
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
else:
raise NotImplementedError
return image
class RandomSwapChannels(object):
def __call__(self, img):
if np.random.randint(2):
order = np.random.permutation(3)
return img[:,:,order]
return img
class RandomCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
h, w, _ = image.shape
new_w, new_h = scale_down((w, h), self.size)
if w == new_w:
x0 = 0
else:
x0 = random.randint(0, w - new_w)
if h == new_h:
y0 = 0
else:
y0 = random.randint(0, h - new_h)
out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
return out
class RandomResizedCrop(object):
def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
self.size = size
self.scale = scale
self.ratio = ratio
def __call__(self,img):
if random.random() < 0.2:
return cv2.resize(img,self.size)
h, w, _ = img.shape
area = h * w
d=1
for attempt in range(10):
target_area = random.uniform(self.scale[0], self.scale[1]) * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = random.randint(0, w - new_w)
y0 = (random.randint(0, h - new_h))//d
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class DownCrop():
def __init__(self, size, select, scale=(0.36,0.81)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = h-new_h
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class ResizedCrop(object):
def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
d=1
if attr_idx == 2:
self.scale=(0.36,0.81)
d=2
if attr_idx == 0:
self.scale=(0.81,1.0)
target_area = (self.scale[0]+self.scale[1])/2.0 * area
# aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
# if random.random() < 0.5:
# new_h, new_w = new_w, new_h
if new_w < w and new_h < h:
x0 = (w - new_w)//2
y0 = (h - new_h)//d//2
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomTwelveCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
sh, sw, _ = image.shape
new_w,new_h=self.size
image_list=[]
image_list.append(cv2.resize(image, self.size))
x0 = 0
y0 = 0
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int(sw - new_w)
y0 = 0
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = 0
y0 = int(sh - new_h)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int(sw-new_w)
y0 = int(sh - new_h)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int((sw - new_w) / 2)
y0 = int((sh - new_h)/ 2)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
flipimage=cv2.flip(image, 0)
image_list.append(cv2.resize(flipimage, self.size))
x0 = 0
y0 = 0
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int(sw - new_w)
y0 = 0
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = 0
y0 = int(sh - new_h)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int(sw - new_w)
y0 = int(sh - new_h)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
x0 = int((sw - new_w) / 2)
y0 = int((sh - new_h) / 2)
image_list.append(fixed_crop(image, x0, y0, new_w, new_h, self.size))
return image_list
class RandomHflip(object):
def __call__(self, image):
if random.randint(2):
return cv2.flip(image, 1)
else:
return image
class Hflip(object):
def __init__(self,doHflip):
self.doHflip = doHflip
def __call__(self, image):
if self.doHflip:
return cv2.flip(image, 1)
else:
return image
class CenterCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, image):
return center_crop(image, self.size)
class UpperCrop():
def __init__(self, size, scale=(0.09, 0.64)):
self.size = size
self.scale = scale
def __call__(self,img):
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/2.0
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = int(0.5*dw)
y0 = 0
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out
# Fallback
return center_crop(img, self.size)
class RandomUpperCrop(object):
def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint(0, h - new_h))//10
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
self.size = size
self.scale = scale
self.ratio = ratio
self.select = select
def __call__(self,img, attr_idx):
if random.random() < 0.2:
return img, attr_idx
if attr_idx not in self.select:
return img, attr_idx
if attr_idx == 0:
self.scale=(0.64,1.0)
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
new_w = int(round(math.sqrt(target_area * aspect_ratio)))
new_h = int(round(math.sqrt(target_area / aspect_ratio)))
#
# new_w = int(round(math.sqrt(target_area)))
# new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
y0 = (random.randint((h - new_h)*9//10, h - new_h))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
# cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
# cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
#
# cv2.waitKey(0)
return out, attr_idx
# Fallback
return center_crop(img, self.size), attr_idx
class RandomHShift(object):
def __init__(self, select, scale=(0.0, 0.2)):
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
do_shift_crop = random.randint(0, 2)
if do_shift_crop:
h, w, _ = img.shape
min_shift = int(w*self.scale[0])
max_shift = int(w*self.scale[1])
shift_idx = random.randint(min_shift, max_shift)
direction = random.randint(0,2)
if direction:
right_part = img[:, -shift_idx:, :]
left_part = img[:, :-shift_idx, :]
else:
left_part = img[:, :shift_idx, :]
right_part = img[:, shift_idx:, :]
img = np.concatenate((right_part, left_part), axis=1)
# Fallback
return img, attr_idx
class RandomBottomCrop(object):
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
for attempt in range(10):
s = random.uniform(self.scale[0], self.scale[1])
d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h - new_h
x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class BottomCrop():
def __init__(self, size, select, scale=(0.4, 0.8)):
self.size = size
self.scale = scale
self.select = select
def __call__(self,img, attr_idx):
if attr_idx not in self.select:
return img, attr_idx
h, w, _ = img.shape
area = h * w
s = (self.scale[0]+self.scale[1])/3.*2.
target_area = s * area
new_w = int(round(math.sqrt(target_area)))
new_h = int(round(math.sqrt(target_area)))
if new_w < w and new_h < h:
dw = w-new_w
dh = h-new_h
x0 = int(0.5*dw)
y0 = int(0.9*dh)
out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
return out, attr_idx
# Fallback
return bottom_crop(img, self.size), attr_idx
class Resize(object):
def __init__(self, size, inter=cv2.INTER_LINEAR):
self.size = size
self.inter = inter
def __call__(self, image):
return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)
class Lighter(object):
def __init__(self, alpha=(8,12), beta=(-10,10)):
self.alpha_upper = alpha[0]
self.alpha_lower = alpha[1]
self.beta_upper = beta[0]
self.beta_lower = beta[1]
def __call__(self, image):
if random.random() > 0.5:
image = np.float32(image)
alpha = random.randint(self.alpha_upper,self.alpha_lower) /10
beta = random.randint(self.beta_upper,self.beta_lower)
image = alpha * image + beta
return image
class ExpandBorder(object):
def __init__(self, mode='constant', value=255, size=(336,336), resize=False):
self.mode = mode
self.value = value
self.resize = resize
self.size = size
def __call__(self, image):
h, w, _ = image.shape
if h > w:
pad1 = (h-w)//2
pad2 = h - w - pad1
if self.mode == 'constant':
image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
self.mode, constant_values=self.value)
else:
image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
elif h < w:
pad1 = (w-h)//2
pad2 = w-h - pad1
if self.mode == 'constant':
image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
self.mode,constant_values=self.value)
else:
image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
if self.resize:
image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
return image
class AstypeToInt():
def __call__(self, image, attr_idx):
return image.clip(0,255.0).astype(np.uint8), attr_idx
class AstypeToFloat():
def __call__(self, image, attr_idx):
return image.astype(np.float32), attr_idx
import matplotlib.pyplot as plt
class Normalize(object):
def __init__(self,mean, std):
'''
:param mean: RGB order
:param std: RGB order
'''
self.mean = np.array(mean).reshape(3,1,1)
self.std = np.array(std).reshape(3,1,1)
def __call__(self, image):
'''
:param image: (H,W,3) RGB
:return:
'''
# plt.figure(1)
# plt.imshow(image)
# plt.show()
# return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std
return image.transpose((2, 0, 1))
class Normalize_test(object):
def __init__(self,mean, std):
'''
:param mean: RGB order
:param std: RGB order
'''
self.mean = np.array(mean).reshape(3,1,1)
self.std = np.array(std).reshape(3,1,1)
def __call__(self, image_list):
'''
:param image: (H,W,3) RGB
:return:
'''
# plt.figure(1)
# plt.imshow(image)
# plt.show()
for i in range(len(image_list)):
image_list[i]=(image_list[i].transpose((2, 0, 1)) / 255. - self.mean) / self.std
return image_list
class RandomErasing(object):
def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
self.EPSILON = EPSILON
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
self.select = select
def __call__(self, img,attr_idx):
if attr_idx not in self.select:
return img,attr_idx
if random.uniform(0, 1) > self.EPSILON:
return img,attr_idx
for attempt in range(100):
area = img.shape[1] * img.shape[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.shape[2] and h <= img.shape[1]:
x1 = random.randint(0, img.shape[1] - h)
y1 = random.randint(0, img.shape[2] - w)
if img.shape[0] == 3:
# img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
# img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
# img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
else:
img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
# img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
return img,attr_idx
return img,attr_idx
'''
if __name__ == '__main__':
import matplotlib.pyplot as plt
class FSAug(object):
def __init__(self):
self.augment = Compose([
AstypeToFloat(),
# RandomHShift(scale=(0.,0.2),select=range(8)),
# RandomRotate(angles=(-20., 20.), bound=True),
ExpandBorder(select=range(8), mode='symmetric'),# symmetric
# Resize(size=(336, 336), select=[ 2, 7]),
AstypeToInt()
])
def __call__(self, spct,attr_idx):
return self.augment(spct,attr_idx)
trans = FSAug()
img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
img_trans,_ = trans(img,5)
# img_trans2,_ = trans(img,6)
print (img_trans.max(), img_trans.min())
print (img_trans.dtype)
plt.figure()
plt.subplot(221)
plt.imshow(img)
plt.subplot(222)
plt.imshow(img_trans)
# plt.subplot(223)
# plt.imshow(img_trans2)
# plt.imshow(img_trans2)
plt.show()
'''
def Laplas(img):
src = img
dst1 = cv2.pyrDown(src)
dst2 = cv2.pyrDown(dst1)
dst3 = cv2.pyrDown(dst2)
dst4 = cv2.pyrUp(dst3)
dst5 = cv2.pyrUp(dst4)
dst6 = cv2.pyrUp(dst5)
h1, w1, c1 = dst6.shape
src = cv2.resize(src, (w1, h1))
dst7 = src - dst6
#image = Image.fromarray(cv2.cvtColor(dst7, cv2.COLOR_BGR2RGB))
image=cv2.cvtColor(dst7, cv2.COLOR_BGR2RGB)
return image
if __name__ == '__main__':
pre_path = '/data1/digital_dataset/1030_data/train_img/'
img_list = os.listdir(pre_path)
for image_path in img_list:
print(pre_path, image_path)
img = cv2.imread(os.path.join(pre_path, image_path))
cv2.imshow('test', img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
l = perspective_transformation()
img = l(img)
plt.imshow(img)
plt.show()
print(666)