将传统NLP领域提出来的Transformer技术与yolo目标检测模型融合已经成为一种经典的做法,早在之前的很多论文里面就有这种组合应用的出现了,本文主要是借鉴前文的思路,开发基于yolov5+transformer的汽车车损检测识别模型,首先看下效果图:
改进融合的模型yaml文件如下:
#Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
#Backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3TR, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
#Head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
主要是在BackBone部分加入了SwinTransformer模块,如下所示:
接下来看下数据集:
YOLO格式标注数据文件如下:
实例标注数据内容如下:
0 0.570801 0.273926 0.780273 0.413086
0 0.76416 0.705078 0.280273 0.253906
0 0.512695 0.652832 0.226562 0.157227
VOC格式标注数据文件如下:
实例标注数据内容如下所示:
CarDamage
1b19e1b4-e1b6-483c-967e-5a0d10c21567.jpg
YSHC
1024
1024
3
0
默认执行100次的迭代计算,因为车损数据并没有获取很多,主要是实践整个流程,所以训练耗时并不多,接下来看下结果详情。
LABEL数据可视化如下所示:
混淆矩阵如下:
F1值曲线和PR曲线:
训练batch检测实例如下:
最后开发界面实现可视化推理应用。
上传待检测图像:
检测推理计算: