常用数据结构及复杂度 - sangmado - 博客园
Data Structure |
Add |
Find |
Delete |
GetByIndex |
Array (T[]) | O(n) |
O(n) |
O(n) |
O(1) |
Linked list (LinkedList |
O(1) |
O(n) |
O(n) |
O(n) |
Resizable array list (List |
O(1) |
O(n) |
O(n) |
O(1) |
Stack (Stack |
O(1) |
- |
O(1) |
- |
Queue (Queue |
O(1) |
- |
O(1) |
- |
Hash table (Dictionary |
O(1) |
O(1) |
O(1) |
- |
Tree-based dictionary (SortedDictionary |
O(log n) |
O(log n) |
O(log n) |
- |
Hash table based set (HashSet |
O(1) |
O(1) |
O(1) |
- |
Tree based set (SortedSet |
O(log n) |
O(log n) |
O(log n) |
- |
Array (T[])
Linked list (LinkedList
Resizable array list (List
Stack (Stack
Queue (Queue
Hash table (Dictionary
Tree-based dictionary (SortedDictionary
Hash table based set (HashSet
Tree based set (SortedSet
在计算机程序设计中,数组(Array)是最简单的而且应用最广泛的数据结构之一。在任何编程语言中,数组都有一些共性:
对于数组的常规操作包括:
在 C# 中,可以通过如下的方式声明数组变量。
1 int allocationSize = 10; 2 bool[] booleanArray = new bool[allocationSize]; 3 FileInfo[] fileInfoArray = new FileInfo[allocationSize];
上面的代码将在 CLR 托管堆中分配一块连续的内存空间,用以容纳数量为 allocationSize ,类型为 arrayType 的数组元素。如果 arrayType 为值类型,则将会有 allocationSize 个未封箱(unboxed)的 arrayType 值被创建。如果 arrayType 为引用类型,则将会有 allocationSize 个 arrayType 类型的引用被创建。
如果我们为 FileInfo[] 数组中的一些位置赋上值,则引用关系为下图所示。
.NET 中的数组都支持对元素的直接读写操作。语法如下:
1 // 读数组元素 2 bool b = booleanArray[7]; 3 4 // 写数组元素 5 booleanArray[0] = false;
访问一个数组元素的时间复杂度为 O(1),因此对数组的访问时间是恒定的。也就是说,与数组中包含的元素数量没有直接关系,访问一个元素的时间是相同的。
由于数组是固定长度的,并且数组中只能存储同一种类型或类型的衍生类型。这在使用中会受到一些限制。.NET 提供了一种数据结构 ArrayList 来解决这些问题。
1 ArrayList countDown = new ArrayList(); 2 countDown.Add(3); 3 countDown.Add(2); 4 countDown.Add(1); 5 countDown.Add("blast off!"); 6 countDown.Add(new ArrayList());
ArrayList 是长度可变的数组,并且它可以存储不同类型的元素。
但这些灵活性是以牺牲性能为代价的。在上面 Array 的描述中,我们知道 Array 在存储值类型时是采用未装箱(unboxed)的方式。由于 ArrayList 的 Add 方法接受 object 类型的参数,导致如果添加值类型的值会发生装箱(boxing)操作。这在频繁读写 ArrayList 时会产生额外的开销,导致性能下降。
当 .NET 中引入泛型功能后,上面 ArrayList 所带来的性能代价可以使用泛型来消除。.NET 提供了新的数组类型 List
泛型允许开发人员在创建数据结构时推迟数据类型的选择,直到使用时才确定选择哪种类型。泛型(Generics)的主要优点包括:
List
1 // 创建 int 类型列表 2 ListmyFavoriteIntegers = new List (); 3 4 // 创建 string 类型列表 5 List friendsNames = new List ();
List
1 ListpowersOf2 = new List (); 2 3 powersOf2.Add(1); 4 powersOf2.Add(2); 5 6 powersOf2[1] = 10; 7 8 int sum = powersOf2[1] + powersOf2[2];
List
在链表(Linked List)中,每一个元素都指向下一个元素,以此来形成了一个链(chain)。
在创建一个链表时,我们仅需持有头节点 head 的引用,这样通过逐个遍历下一个节点 next 即可找到所有的节点。
链表与数组有着同样的线性运行时间 O(n)。例如在上图中,如果我们要查找 Sam 节点,则必须从头节点 Scott 开始查找,逐个遍历下一个节点直到找到 Sam。
同样,从链表中删除一个节点的渐进时间也是线性的O(n)。因为在删除之前我们仍然需要从 head 开始遍历以找到需要被删除的节点。而删除操作本身则变得简单,即让被删除节点的左节点的 next 指针指向其右节点。下图展示了如何删除一个节点。
向链表中插入一个新的节点的渐进时间取决于链表是否是有序的。如果链表不需要保持顺序,则插入操作就是常量时间O(1),可以在链表的头部或尾部添加新的节点。而如果需要保持链表的顺序结构,则需要查找到新节点被插入的位置,这使得需要从链表的头部 head 开始逐个遍历,结果就是操作变成了O(n)。下图展示了插入节点的示例。
链表与数组的不同之处在于,数组的中的内容在内存中时连续排列的,可以通过下标来访问,而链表中内容的顺序则是由各对象的指针所决定,这就决定了其内容的排列不一定是连续的,所以不能通过下标来访问。如果需要更快速的查找操作,使用数组可能是更好的选择。
使用链表的最主要的优势就是,向链表中插入或删除节点无需调整结构的容量。而相反,对于数组来说容量始终是固定的,如果需要存放更多的数据,则需要调整数组的容量,这就会发生新建数组、数据拷贝等一系列复杂且影响效率的操作。即使是 List
链表的另一个优点就是特别适合以排序的顺序动态的添加新元素。如果要在数组的中间的某个位置添加新元素,不仅要移动所有其余的元素,甚至还有可能需要重新调整容量。
所以总结来说,数组适合数据的数量是有上限的情况,而链表适合元素数量不固定的情况。
在 .NET 中已经内置了 LinkedList
当我们需要使用先进先出顺序(FIFO)的数据结构时,.NET 为我们提供了 Queue
Queue
默认情况下,Queue
Enqueue 方法会判断 Queue
默认情况下,增长因子(growth factor)的值为 2.0,所以内部数组的长度会增加一倍。也可以通过构造函数中指定增长因子。Queue
Dequeue 方法根据 head 索引返回当前元素,之后将 head 索引指向 null,再递增 head 的值。
当需要使用后进先出顺序(LIFO)的数据结构时,.NET 为我们提供了 Stack
Stack
Stack
如果 Stack
现在假设我们要使用员工的社保号作为唯一标识进行存储。社保号的格式为 DDD-DD-DDDD(D 的范围为数字 0-9)。
如果使用 Array 存储员工信息,要查询社保号为 111-22-3333 的员工,则将会尝试遍历数组的所有位置,即执行渐进时间为 O(n) 的查询操作。好一些的办法是将社保号排序,以使查询渐进时间降低到 O(log(n))。但理想情况下,我们更希望查询渐进时间为 O(1)。
一种方案是建立一个大数组,范围从 000-00-0000 到 999-99-9999 。
这种方案的缺点是浪费空间。如果我们仅需要存储 1000 个员工的信息,那么仅利用了 0.0001% 的空间。
第二种方案就是用哈希函数(Hash Function)压缩序列。
我们选择使用社保号的后四位作为索引,以减少区间的跨度。这样范围将从 0000 到 9999。
在数学上,将这种从 9 位数转换为 4 位数的方式称为哈希转换(Hashing)。可以将一个数组的索引空间(indexers space)压缩至相应的哈希表(Hash Table)。
在上面的例子中,哈希函数的输入为 9 位数的社保号,输出结果为后 4 位。
H(x) = last four digits of x
上图中也说明在哈希函数计算中常见的一种行为:哈希冲突(Hash Collisions)。即有可能两个社保号的后 4 位均为 0000。
当要添加新元素到 Hashtable 中时,哈希冲突是导致操作被破坏的一个因素。如果没有冲突发生,则元素被成功插入。如果发生了冲突,则需要判断冲突的原因。因此,哈希冲突提高了操作的代价,Hashtable 的设计目标就是要尽可能减低冲突的发生。
处理哈希冲突的方式有两种:避免和解决,即冲突避免机制(Collision Avoidance)和冲突解决机制(Collision Resolution)。
避免哈希冲突的一个方法就是选择合适的哈希函数。哈希函数中的冲突发生的几率与数据的分布有关。例如,如果社保号的后 4 位是随即分布的,则使用后 4 位数字比较合适。但如果后 4 位是以员工的出生年份来分配的,则显然出生年份不是均匀分布的,则选择后 4 位会造成大量的冲突。我们将这种选择合适的哈希函数的方法称为冲突避免机制(Collision Avoidance)。
在处理冲突时,有很多策略可以实施,这些策略称为冲突解决机制(Collision Resolution)。其中一种方法就是将要插入的元素放到另外一个块空间中,因为相同的哈希位置已经被占用。
通常采用的冲突解决策略为开放寻址法(Open Addressing),所有的元素仍然都存放在哈希表内的数组中。
开放寻址法的最简单的一种实现就是线性探查(Linear Probing),步骤如下:
现在如果我们要将五个员工的信息插入到哈希表中:
则插入后的哈希表可能如下:
元素的插入过程:
线性探查(Linear Probing)方式虽然简单,但并不是解决冲突的最好的策略,因为它会导致同类哈希的聚集(Primary Clustering)。这导致搜索哈希表时,冲突依然存在。例如上面例子中的哈希表,如果我们要访问 Edward 的信息,因为 Edward 的社保号 111-00-1235 哈希为 1235,然而我们在 1235 位置找到的是 Bob,所以再搜索 1236,找到的却是 Danny,以此类推直到找到 Edward。
一种改进的方式为二次探查(Quadratic Probing),即每次检查位置空间的步长为平方倍数。也就是说,如果位置 s 被占用,则首先检查 s + 12 处,然后检查s - 12,s + 22,s - 22,s + 32 依此类推,而不是象线性探查那样以 s + 1,s + 2 ... 方式增长。尽管如此,二次探查同样也会导致同类哈希聚集问题(Secondary Clustering)。
.NET 中的 Hashtable 类的实现,要求添加元素时不仅要提供元素(Item),还要为该元素提供一个键(Key)。例如,Key 为员工社保号,Item 为员工信息对象。可以通过 Key 作为索引来查找 Item。
1 Hashtable employees = new Hashtable(); 2 3 // Add some values to the Hashtable, indexed by a string key 4 employees.Add("111-22-3333", "Scott"); 5 employees.Add("222-33-4444", "Sam"); 6 employees.Add("333-44-55555", "Jisun"); 7 8 // Access a particular key 9 if (employees.ContainsKey("111-22-3333")) 10 { 11 string empName = (string)employees["111-22-3333"]; 12 Console.WriteLine("Employee 111-22-3333's name is: " + empName); 13 } 14 else 15 Console.WriteLine("Employee 111-22-3333 is not in the hash table...");
Hashtable 类中的哈希函数比前面介绍的社保号的实现要更为复杂。哈希函数必须返回一个序数(Ordinal Value)。对于社保号的例子,通过截取后四位就可以实现。但实际上 Hashtable 类可以接受任意类型的值作为 Key,这都要归功于 GetHashCode 方法,一个定义在 System.Object 中的方法。GetHashCode 的默认实现将返回一个唯一的整数,并且保证在对象的生命周期内保持不变。
Hashtable 类中的哈希函数定义如下:
H(key) = [GetHash(key) + 1 + (((GetHash(key) >> 5) + 1) % (hashsize – 1))] % hashsize
这里的 GetHash(key) 默认是调用 key 的 GetHashCode 方法以获取返回的哈希值。hashsize 指的是哈希表的长度。因为要进行求模,所以最后的结果 H(key) 的范围在 0 至 hashsize - 1 之间。
当在哈希表中添加或获取一个元素时,会发生哈希冲突。前面我们简单地介绍了两种冲突解决策略:
在 Hashtable 类中则使用的是一种完全不同的技术,称为二度哈希(rehashing)(有些资料中也将其称为双重哈希(double hashing))。
二度哈希的工作原理如下:
有一个包含一组哈希函数 H1...Hn 的集合。当需要从哈希表中添加或获取元素时,首先使用哈希函数 H1。如果导致冲突,则尝试使用 H2,以此类推,直到 Hn。所有的哈希函数都与 H1 十分相似,不同的是它们选用的乘法因子(multiplicative factor)。
通常,哈希函数 Hk 的定义如下:
Hk(key) = [GetHash(key) + k * (1 + (((GetHash(key) >> 5) + 1) % (hashsize – 1)))] % hashsize
当使用二度哈希时,重要的是在执行了 hashsize 次探查后,哈希表中的每一个位置都有且只有一次被访问到。也就是说,对于给定的 key,对哈希表中的同一位置不会同时使用 Hi 和 Hj。在 Hashtable 类中使用二度哈希公式,其始终保持 (1 + (((GetHash(key) >> 5) + 1) % (hashsize – 1)) 与 hashsize 互为素数(两数互为素数表示两者没有共同的质因子)。
二度哈希使用了 Θ(m2) 种探查序列,而线性探查(Linear Probing)和二次探查(Quadratic Probing)使用了Θ(m) 种探查序列,故二度哈希提供了更好的避免冲突的策略。
Hashtable 类中包含一个私有成员变量 loadFactor,loadFactor 指定了哈希表中元素数量与位置(slot)数量之间的最大比例。例如:如果 loadFactor 等于 0.5,则说明哈希表中只有一半的空间存放了元素值,其余一半都为空。
哈希表的构造函数允许用户指定 loadFactor 值,定义范围为 0.1 到 1.0。然而,不管你提供的值是多少,范围都不会超过 72%。即使你传递的值为 1.0,Hashtable 类的 loadFactor 值还是 0.72。微软认为loadFactor 的最佳值为 0.72,这平衡了速度与空间。因此虽然默认的 loadFactor 为 1.0,但系统内部却自动地将其改变为 0.72。所以,建议你使用缺省值1.0(但实际上是 0.72)。
向 Hashtable 中添加新元素时,需要检查以保证元素与空间大小的比例不会超过最大比例。如果超过了,哈希表空间将被扩充。步骤如下:
由此看出,对哈希表的扩充将是以性能损耗为代价。因此,我们应该预先估计哈希表中最有可能容纳的元素数量,在初始化哈希表时给予合适的值进行构造,以避免不必要的扩充。
Hashtable 类是一个类型松耦合的数据结构,开发人员可以指定任意的类型作为 Key 或 Item。当 .NET 引入泛型支持后,类型安全的 Dictionary
DictionaryvariableName = new Dictionary ();
如果继续使用上面描述的社保号和员工的示例,我们可以创建一个 Dictionary
DictionaryemployeeData = new Dictionary ();
这样我们就可以添加和删除员工信息了。
1 // Add some employees 2 employeeData.Add(455110189) = new Employee("Scott Mitchell"); 3 employeeData.Add(455110191) = new Employee("Jisun Lee"); 4 5 // See if employee with SSN 123-45-6789 works here 6 if (employeeData.ContainsKey(123456789))
Dictionary
前面使用的探查技术(probing),如果发生冲突,则将尝试列表中的下一个位置。如果使用二度哈希(rehashing),则将导致所有的哈希被重新计算。而链接技术(chaining)将采用额外的数据结构来处理冲突。Dictionary
下面的示意图中描述了 Dictionary
上图中,该 Dictionary 包含了 8 个桶,也就是自顶向下的黄色背景的位置。一定数量的 Employee 对象已经被添加至 Dictionary 中。如果一个新的 Employee 要被添加至 Dictionary 中,将会被添加至其 Key 的哈希所对应的桶中。如果在相同位置已经有一个 Employee 存在了,则将会将新元素添加到列表的前面。
向 Dictionary 中添加元素的操作涉及到哈希计算和链表操作,但其仍为常量,渐进时间为 O(1)。
对 Dictionary 进行查询和删除操作时,其平均时间取决于 Dictionary 中元素的数量和桶(bucket)的数量。具体的说就是运行时间为 O(n/m),这里 n 为元素的总数量,m 是桶的数量。但 Dictionary 几乎总是被实现为 n = O(m),也就是说,元素的总数绝不会超过桶的总数,所以 O(n/m) 也变成了常量 O(1)。