Spark SQL 是 Spark 用于处理结构化数据的一个 模块
这里的机构化数据就是值类似数据库的二维数据表
SparkSQL 的前身是 Shark,给熟悉后端开发 但又不理解 MapReduce 的技术人员提供快速上手的工具。
在数据库中,schema(发音 “skee-muh” 或者“skee-mah”,中文叫模式)是数据库的组织和结构,schemas 和schemata都可以作为复数形式。模式中包含了schema对象,可以是表(table)、列(column)、数据类型(data type)、视图(view)、存储过程(stored procedures)、关系(relationships)、主键(primary key)、外键(foreign key)等。数据库模式可以用一个可视化的图来表示,它显示了数据库对象及其相互之间的关系
重点学习如何使用 Spark SQL 所提供的 DataFrame 和 DataSet 模型进行编程.,以及了解它们之间的关系和转换,掌握具体的 SQL 书写是学习的前期。
写sql需要先有表
注意: df.createOrReplaceTempView(“people” 创建的是一个视图,数据库中有view和table的概念,其实都是表,只是view是只读的表不能修改,tbale是可读写的表。
Session 范围内是只临时表只在一个连接内有效,在其他连接中无效。
RDD 转换为 DataFrame, RDD 中数据没有机构,需要告诉DataFrame 数据的结构,就可以转换
DataFrame 转换为 RDD,RDD不需要数据结构,可以直接转换。
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet
DataFrame 和 DataSet 的主要区别时DataSet需要数据类型,DataFrame转DataSet指定类型即可
实际开发中,都是使用 IDEA 进行开发的。
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-sql_2.12artifactId>
<version>3.0.0version>
dependency>
object SparkSQL01_Demo {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new
SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建 SparkSession 对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
//RDD=>DataFrame=>DataSet 转换需要引入隐式转换规则,否则无法转换
//spark 不是包名,是上下文环境对象名
import spark.implicits._
//读取 json 文件 创建 DataFrame {"username": "lisi","age": 18}
val df: DataFrame = spark.read.json("input/test.json")
//df.show()
//SQL 风格语法
df.createOrReplaceTempView("user")
//spark.sql("select avg(age) from user").show
//DSL 风格语法
//df.select("username","age").show()
//*****RDD=>DataFrame=>DataSet*****
//RDD
val rdd1: RDD[(Int, String, Int)] =
spark.sparkContext.makeRDD(List((1,"zhangsan",30),(2,"lisi",28),(3,"wangwu",
20)))
//DataFrame
val df1: DataFrame = rdd1.toDF("id","name","age")
//df1.show()
//DateSet
val ds1: Dataset[User] = df1.as[User]
//ds1.show()
//*****DataSet=>DataFrame=>RDD*****
//DataFrame
val df2: DataFrame = ds1.toDF()
//RDD 返回的 RDD 类型为 Row,里面提供的 getXXX 方法可以获取字段值,类似 jdbc 处理结果集,
但是索引从 0 开始
val rdd2: RDD[Row] = df2.rdd
//rdd2.foreach(a=>println(a.getString(1)))
//*****RDD=>DataSet*****
rdd1.map{
case (id,name,age)=>User(id,name,age)
}.toDS()
//*****DataSet=>=>RDD*****
ds1.rdd
//释放资源
spark.stop()
} }
//样例类
case class User(id:Int,name:String,age:Int)
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object Spark02_SparkSQL_UDF {
def main(args: Array[String]): Unit = {
// TODO 创建SparkSQL的运行环境
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
val df = spark.read.json("datas/user.json")
df.createOrReplaceTempView("user")
//自定义一个函数,函数名为prefixName,传入参数为name:String
spark.udf.register("prefixName", (name:String) => {
"Name: " + name
})
//使用自定义的函数
spark.sql("select age, prefixName(username) from user").show
// TODO 关闭环境
spark.close()
}
}
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Dataset, Encoder, Encoders, SparkSession, TypedColumn, functions}
object Spark03_SparkSQL_UDAF2 {
def main(args: Array[String]): Unit = {
// TODO 创建SparkSQL的运行环境
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
val spark = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
val df = spark.read.json("datas/user.json")
// 早期版本中,spark不能在sql中使用强类型UDAF操作
// SQL & DSL
// 早期的UDAF强类型聚合函数使用DSL语法操作
val ds: Dataset[User] = df.as[User]
// 将UDAF函数转换为查询的列对象
val udafCol: TypedColumn[User, Long] = new MyAvgUDAF().toColumn
ds.select(udafCol).show
// TODO 关闭环境
spark.close()
}
/*
自定义聚合函数类:计算年龄的平均值
1. 继承org.apache.spark.sql.expressions.Aggregator, 定义泛型
IN : 输入的数据类型 User
BUF : 缓冲区的数据类型 Buff
OUT : 输出的数据类型 Long
2. 重写方法(6)
*/
case class User(username:String, age:Long)
case class Buff( var total:Long, var count:Long )
class MyAvgUDAF extends Aggregator[User, Buff, Long]{
// z & zero : 初始值或零值
// 缓冲区的初始化
override def zero: Buff = {
Buff(0L,0L)
}
// 根据输入的数据更新缓冲区的数据
override def reduce(buff: Buff, in: User): Buff = {
buff.total = buff.total + in.age
buff.count = buff.count + 1
buff
}
// 因为是分布式计算有多个缓冲区,需要合并每个缓冲区数据(即合并每个分区的计算结果)
override def merge(buff1: Buff, buff2: Buff): Buff = {
buff1.total = buff1.total + buff2.total
buff1.count = buff1.count + buff2.count
buff1
}
//根据最后的结果,再执行具体的业务计算逻辑
override def finish(buff: Buff): Long = {
buff.total / buff.count
}
// 缓冲区的编码操作
override def bufferEncoder: Encoder[Buff] = Encoders.product
// 输出的编码操作
override def outputEncoder: Encoder[Long] = Encoders.scalaLong
}
}
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<version>5.1.27version>
dependency>
2)读取数据
val conf: SparkConf = new
SparkConf().setMaster("local[*]").setAppName("SparkSQL")
//创建 SparkSession 对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//方式 1:通用的 load 方法读取
spark.read.format("jdbc")
.option("url", "jdbc:mysql://linux1:3306/spark-sql")
.option("driver", "com.mysql.jdbc.Driver")
.option("user", "root")
.option("password", "123123")
.option("dbtable", "user")
.load().show
//方式 2:通用的 load 方法读取 参数另一种形式
spark.read.format("jdbc")
.options(Map("url"->"jdbc:mysql://linux1:3306/spark-sql?user=root&password=
123123",
"dbtable"->"user","driver"->"com.mysql.jdbc.Driver")).load().show
//方式 3:使用 jdbc 方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://linux1:3306/spark-sql",
"user", props)
df.show
//释放资源
spark.stop()
3)写入数据
case class User2(name: String, age: Long)
。。。
val conf: SparkConf = new
SparkConf().setMaster("local[*]").setAppName("SparkSQL")
//创建 SparkSession 对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val rdd: RDD[User2] = spark.sparkContext.makeRDD(List(User2("lisi", 20),
User2("zs", 30)))
val ds: Dataset[User2] = rdd.toDS
//方式 1:通用的方式 format 指定写出类型
ds.write
.format("jdbc")
.option("url", "jdbc:mysql://linux1:3306/spark-sql")
.option("user", "root")
.option("password", "123123")
.option("dbtable", "user")
.mode(SaveMode.Append)
.save()
//方式 2:通过 jdbc 方法
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://linux1:3306/spark-sql",
"user", props)
//释放资源
spark.stop()
1)导入依赖
<dependency>
<groupId>org.apache.sparkgroupId>
<artifactId>spark-hive_2.12artifactId>
<version>3.0.0version>
dependency>
<dependency>
<groupId>org.apache.hivegroupId>
<artifactId>hive-execartifactId>
<version>1.2.1version>
dependency>
<dependency>
<groupId>mysqlgroupId>
<artifactId>mysql-connector-javaartifactId>
<version>5.1.27version>
dependency>
2)将 hive-site.xml 文件拷贝到项目的 resources 目录中,代码实现
//创建 SparkSession
val spark: SparkSession = SparkSession
.builder()
.enableHiveSupport()
.master("local[*]")
.appName("sql")
.getOrCreate()
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.sql._
object Spark05_SparkSQL_Hive {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "root")
// TODO 创建SparkSQL的运行环境
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
/启用Hive的支持
val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()
// 使用SparkSQL连接外置的Hive
// 1. 拷贝Hive-size.xml文件到classpath下
// 2. 启用Hive的支持
// 3. 增加对应的依赖关系(包含MySQL驱动)
spark.sql("show tables").show
// TODO 关闭环境
spark.close()
}
}
我们这次 Spark-sql 操作中所有的数据均来自 Hive,首先在 Hive 中创建表,,并导入数据。
一共有 3 张表: 1 张用户行为表,1 张城市表,1 张产品表
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.sql._
object Spark06_SparkSQL_Test {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "root")
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()
spark.sql("use atguigu")
// 准备数据
//多行写sql的方式,在hive中创建表
spark.sql(
"""
|CREATE TABLE `user_visit_action`(
| `date` string,
| `user_id` bigint,
| `session_id` string,
| `page_id` bigint,
| `action_time` string,
| `search_keyword` string,
| `click_category_id` bigint,
| `click_product_id` bigint,
| `order_category_ids` string,
| `order_product_ids` string,
| `pay_category_ids` string,
| `pay_product_ids` string,
| `city_id` bigint)
|row format delimited fields terminated by '\t'
""".stripMargin)
//加载本地数据
spark.sql(
"""
|load data local inpath 'datas/user_visit_action.txt' into table atguigu.user_visit_action
""".stripMargin)
spark.sql(
"""
|CREATE TABLE `product_info`(
| `product_id` bigint,
| `product_name` string,
| `extend_info` string)
|row format delimited fields terminated by '\t'
""".stripMargin)
spark.sql(
"""
|load data local inpath 'datas/product_info.txt' into table atguigu.product_info
""".stripMargin)
spark.sql(
"""
|CREATE TABLE `city_info`(
| `city_id` bigint,
| `city_name` string,
| `area` string)
|row format delimited fields terminated by '\t'
""".stripMargin)
spark.sql(
"""
|load data local inpath 'datas/city_info.txt' into table atguigu.city_info
""".stripMargin)
spark.sql("""select * from city_info""").show
spark.close()
}
}
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.Aggregator
import scala.collection.mutable
import scala.collection.mutable.ListBuffer
object Spark06_SparkSQL_Test2 {
def main(args: Array[String]): Unit = {
System.setProperty("HADOOP_USER_NAME", "root")
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()
spark.sql("use atguigu")
// 查询基本数据
spark.sql(
"""
| select
| a.*,
| p.product_name,
| c.area,
| c.city_name
| from user_visit_action a
| join product_info p on a.click_product_id = p.product_id
| join city_info c on a.city_id = c.city_id
| where a.click_product_id > -1
""".stripMargin).createOrReplaceTempView("t1")
// 根据区域,商品进行数据聚合
spark.udf.register("cityRemark", functions.udaf(new CityRemarkUDAF()))
spark.sql(
"""
| select
| area,
| product_name,
| count(*) as clickCnt,
| cityRemark(city_name) as city_remark
| from t1 group by area, product_name
""".stripMargin).createOrReplaceTempView("t2")
// 区域内对点击数量进行排行
spark.sql(
"""
| select
| *,
| rank() over( partition by area order by clickCnt desc ) as rank
| from t2
""".stripMargin).createOrReplaceTempView("t3")
// 取前3名
spark.sql(
"""
| select
| *
| from t3 where rank <= 3
""".stripMargin).show(false)
spark.close()
}
case class Buffer( var total : Long, var cityMap:mutable.Map[String, Long] )
// 自定义聚合函数:实现城市备注功能
// 1. 继承Aggregator, 定义泛型
// IN : 城市名称
// BUF : Buffer =>【总点击数量,Map[(city, cnt), (city, cnt)]】
// OUT : 备注信息
// 2. 重写方法(6)
class CityRemarkUDAF extends Aggregator[String, Buffer, String]{
// 缓冲区初始化
override def zero: Buffer = {
Buffer(0, mutable.Map[String, Long]())
}
// 更新缓冲区数据
override def reduce(buff: Buffer, city: String): Buffer = {
buff.total += 1
val newCount = buff.cityMap.getOrElse(city, 0L) + 1
buff.cityMap.update(city, newCount)
buff
}
//因为是分布式计算有多个缓冲区,需要合并每个缓冲区数据(即合并每个分区的计算结果)
override def merge(buff1: Buffer, buff2: Buffer): Buffer = {
buff1.total += buff2.total
val map1 = buff1.cityMap
val map2 = buff2.cityMap
// 两个Map的合并操作方法1
// buff1.cityMap = map1.foldLeft(map2) {
// case ( map, (city, cnt) ) => {
// val newCount = map.getOrElse(city, 0L) + cnt
// map.update(city, newCount)
// map
// }
// }
// 两个Map的合并操作方法2
map2.foreach{
case (city , cnt) => {
val newCount = map1.getOrElse(city, 0L) + cnt
map1.update(city, newCount)
}
}
buff1.cityMap = map1
buff1
}
根据最后的结果,再执行具体的业务计算逻辑: 将统计的结果生成字符串信息
override def finish(buff: Buffer): String = {
val remarkList = ListBuffer[String]()
val totalcnt = buff.total
val cityMap = buff.cityMap
// 降序排列
val cityCntList = cityMap.toList.sortWith(
(left, right) => {
left._2 > right._2
}
).take(2)
val hasMore = cityMap.size > 2
var rsum = 0L
cityCntList.foreach{
case ( city, cnt ) => {
val r = cnt * 100 / totalcnt
remarkList.append(s"${city} ${r}%")
rsum += r
}
}
if ( hasMore ) {
remarkList.append(s"其他 ${100 - rsum}%")
}
remarkList.mkString(", ")
}
override def bufferEncoder: Encoder[Buffer] = Encoders.product
override def outputEncoder: Encoder[String] = Encoders.STRING
}
}