官网介绍: The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.(torchvision包由流行的数据集、模型体系结构和通用的计算机视觉图像转换组成。简单地说就是常用数据集+常见模型+常见图像增强方法)
这个torchvision中主要包含的包:
包含的数据集:
官方说明了:All the datasets have almost similar API. They all have two common arguments: transform and target_transform to transform the input and target respectively.(每一个数据集的API都是基本相同的。他们都有两个相同的参数:transform和target_transform(后面细讲))
我们就用最经典最简单的MNIST手写数字数据集作为例子,先看这个的API:
包含5个参数:
【下面用代码进一步理解】
import torchvision
mydataset = torchvision.datasets.MNIST(root='./',
train=True,
transform=None,
target_transform=None,
download=True)
运行结果:
之后我们需要用到上一节课讲到的dataloader的内容:
from torch.utils.data import Dataset,DataLoader
myloader = DataLoader(dataset=mydataset,
batch_size=16)
for i,(data,label) in enumerate(myloader):
print(data.shape)
print(label.shape)
break
这时会抛出一个错误:
大致看一看,就是pytorch的这个dataloader不是可以把数据集分成batch嘛,这个dataloder只能把tensor或者numpy这样的组合成batch,而现在的数据集的格式是PIL格式。这里验证了之前说到的,transform这个输入是PIL格式的图片,解决方法是:transform不能是None,我们需要将PIL转化成tensor才可以
所以我们把上面的transform稍作修改:
在这里插入代码片mydataset = torchvision.datasets.MNIST(root='./',
train=True,
transform=torchvision.transforms.ToTensor(),
target_transform=None,
download=True)
运行结果:
结果中,16表示一个batch有16个样本,1表示这是单通道的灰度图片,28表示MNIST数据集图片是的大小,然后每一个图片有一个label。
想要获取其他的数据集也是一样的,不过这里就用MNIST作为举例,其他的相同。
预训练模型中torchvision提供了很多种,大体分成下面四类:
分别是分类模型,语义模型,目标检测模型和视频分类模型。这里呢因为分类模型比较常见也比较基础,就主要介绍这个好啦。
在torch1.6.0版本中(应该是比较近的版本),主要包含下面的预训练模型:
构建模型可以通过下面的代码:
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet = models.mobilenet_v2()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()
这样构建的模型的权重值是随机的,只有结构是保存的。想要获取预训练的模型,则需要设置参数pretrained:
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
似乎这些模型的预训练数据集都是ImageNet的那个数据集,输入图片都是3通道的,并且要求输入图片的宽高不小于224像素,并且要求输入图片像素值的范围在0到1之间,然后做一个normalization标准化。
不知道各位在看一些案例的时候,有没有看到这个标准化:mean = [0.485, 0.456, 0.406] 和 std = [0.229, 0.224, 0.225],这个应该是ImageNet的图片的标准化的参数。
最后呢,torchvision官方提供了一个不同模型在Imagenet 1-crop 的一个错误率的比较。可以一起来看看到底哪个模型比较好使。这里我放了一些常见的模型。像是Wide ResNet这种变种我就不放了。
整体来看,还是Resnet残差网络效果好。不过EfficientNet效果更好。