NumPy 是一个Python 库,用于 Python 编程中的科学计算。在本教程中,你将学习如何在 NumPy 数组上以多种方式添加、删除、排序和操作元素。
NumPy 提供了一个多维数组对象和其他派生数组,例如掩码数组和掩码多维数组。
为什么要用 NumPy
NumPy 提供了一个 ndarray 对象,可以使用它来对任何维度的数组进行操作。 ndarray 代表 N 维数组,其中 N 是任意数字。这意味着 NumPy 数组可以是任何维度的。
与 Python 的 List 相比,NumPy 具有许多优势。我们可以在 NumPy 阵列上执行高性能操作,例如:
对数组成员进行排序
数学和逻辑运算
输入/输出功能
统计和线性代数运算
安装 NumPy
要安装NumPy,你的电脑上要先有 Python 和 Pip。
在终端中运行以下命令:
pip install numpy
然后你就可以在脚本中导入 NumPy 了,如下所示:
import numpy
添加数组元素
可以用 NumPy 模块的 append() 方法向 NumPy 数组中添加元素。
append() 的语法如下:
numpy.append(array, value, axis)
value 会被追加到在数组的末尾,并返回一个包含所有元素的 ndarray。
参数 axis 是一个可选的整数,用于定义数组的显示方式。如果没有指定,则数组结构将展平,稍后会演示用法。
以下示例,其中首先声明数组,然后用 append 方法向数组添加更多的值:
import numpy
a = numpy.array([1, 2, 3])
newArray = numpy.append (a, [10, 11, 12])
print(newArray)
# 输出:[ 1 2 3 10 11 12]
添加一列
也可以用NumPy 的 append() 方法插入一列。
在下面的例子中,我们创建了一个二维数组并插入了两列:
import numpy
a = numpy.array([[1, 2, 3], [4, 5, 6]])
b = numpy.array([[400], [800]])
newArray = numpy.append(a, b, axis = 1)
print(newArray)
"""
输出:
[[ 1 2 3 400]
[ 4 5 6 800]]
"""
如果没有使用 axis 参数,则会输出:
[ 1 2 3 4 5 6 400 800]
这就是数组结构的扁平化。
在 NumPy 中,还可以用 insert() 方法插入元素或列。 两者之间的区别在于 insert() 方法可以指定要在哪个索引处添加元素,但 append() 方法会在数组的末尾添加一个值。
Consider the example below:
考虑以下示例:
import numpy
a = numpy.array([1, 2, 3])
newArray = numpy.insert(a, 1, 90)
print(newArray)
# 输出:[ 1 90 2 3]
这里 insert() 方法在索引1处添加元素。在Python中数组索引从0开始。
追加一行
也可以用 append() 方法向数组添加行,就像在数组中附加元素一样简单:
import numpy
a = numpy.array([[1, 2, 3], [4, 5, 6]])
newArray = numpy.append(a, [[50, 60, 70]], axis = 0)
print(newArray)
"""
输出“
[[ 1 2 3]
[ 4 5 6]
[50 60 70]]
"""
删除元素
可以用 NumPy 模块的 delete() 方法删除 NumPy 数组元素:
import numpy
a = numpy.array([1, 2, 3])
newArray = numpy.delete(a, 1, axis = 0)
print(newArray)
# 输出:[1 3]
在本例子中,我们有一个一维数组,用 delete() 方法从数组中删除了索引 1 处的元素。
删除一行
同样,你也可以用 delete() 方法删除行。
下面的例子中我们从二维数组中删除了一行:
import numpy
a = numpy.array([[1, 2, 3], [4, 5, 6], [10, 20, 30]])
newArray = numpy.delete(a, 1, axis = 0)
print(newArray)
"""
输出:
[[ 1 2 3]
[10 20 30]]
"""
在 delete() 方法中,首先给出数组,然后给出要删除的元素的索引。在上例中,我们删除了索引为 1 的元素。
检查 NumPy 数组是否为空
可以用 size 方法返回数组中元素的总数。
在下面的例子中有一个 if 语句,通过 ndarray.size 检查数组中是否有元素,其中 ndarray 可以是任何给定的 NumPy 数组:
import numpy
a = numpy.array([1, 2, 3])
if(a.size == 0):
print("The given Array is empty")
else:
print("The array = ", a)
# 输出:The array = [1 2 3]
更多:python替换字符为空格NumPy 数组使用大全
https://www.002pc.comhttps://www.002pc.com/python/123.html
你可能感兴趣的NumPy,大全,数组,使用
No alive nodes found in your cluster
0踩
赏
0 赞