iic仿真模型

一     i2c_slave_model

/
                                                             
  WISHBONE rev.B2 compliant synthesizable I2C Slave model    
                                                             
                                                             
  Authors: Richard Herveille ([email protected]) www.asics.ws 
           John Sheahan ([email protected])         
                                                             
  Downloaded from: http://www.opencores.org/projects/i2c/    
                                                             
/
                                                             
 Copyright (C) 2001,2002 Richard Herveille                   
                         [email protected]                    
                                                             
 This source file may be used and distributed without        
 restriction provided that this copyright statement is not   
 removed from the file and that any derivative work contains 
 the original copyright notice and the associated disclaimer.
                                                             
     THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY     
 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED   
 TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS   
 FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR      
 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,         
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES    
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE   
 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR        
 BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF  
 LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT  
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE         
 POSSIBILITY OF SUCH DAMAGE.                                 
                                                             
/

//  CVS Log
//
//  $Id: i2c_slave_model.v,v 1.7 2006-09-04 09:08:51 rherveille Exp $
//
//  $Date: 2006-09-04 09:08:51 $
//  $Revision: 1.7 $
//  $Author: rherveille $
//  $Locker:  $
//  $State: Exp $
//
// Change History:
//               $Log: not supported by cvs2svn $
//               Revision 1.6  2005/02/28 11:33:48  rherveille
//               Fixed Tsu:sta timing check.
//               Added Thd:sta timing check.
//
//               Revision 1.5  2003/12/05 11:05:19  rherveille
//               Fixed slave address MSB='1' bug
//
//               Revision 1.4  2003/09/11 08:25:37  rherveille
//               Fixed a bug in the timing section. Changed 'tst_scl' into 'tst_sto'.
//
//               Revision 1.3  2002/10/30 18:11:06  rherveille
//               Added timing tests to i2c_model.
//               Updated testbench.
//
//               Revision 1.2  2002/03/17 10:26:38  rherveille
//               Fixed some race conditions in the i2c-slave model.
//               Added debug information.
//               Added headers.
//

//`include "timescale.v"
`timescale 1 ns/1 ns

module i2c_slave_model (scl, sda);

	//
	// parameters
	//
	parameter I2C_ADR = 7'b101_0000;
				
	//
	// input && outpus
	//
	input scl;
	inout sda;

	//
	// Variable declaration
	//
	wire debug = 1'b1;

	reg [7:0] mem [3:0]; // initiate memory
	reg [7:0] mem_adr;   // memory address
	reg [7:0] mem_do;    // memory data output

	reg sta, d_sta;
	reg sto, d_sto;

	reg [7:0] sr;        // 8bit shift register
	reg       rw;        // read/write direction

	wire      my_adr;    // my address called ??
	wire      i2c_reset; // i2c-statemachine reset
	reg [2:0] bit_cnt;   // 3bit downcounter
	wire      acc_done;  // 8bits transfered
	reg       ld;        // load downcounter

	reg       sda_o;     // sda-drive level
	wire      sda_dly;   // delayed version of sda

	// statemachine declaration
	parameter idle        = 3'b000;
	parameter slave_ack   = 3'b001;
	parameter get_mem_adr = 3'b010;
	parameter gma_ack     = 3'b011;
	parameter data        = 3'b100;
	parameter data_ack    = 3'b101;

	reg [2:0] state; // synopsys enum_state

	//
	// module body
	//

	initial
	begin
	   sda_o = 1'b1;
	   state = idle;
	end

	// generate shift register
	always @(posedge scl)
	  sr <= #1 {sr[6:0],sda};

	//detect my_address
	assign my_adr = (sr[7:1] == I2C_ADR);
	// FIXME: This should not be a generic assign, but rather
	// qualified on address transfer phase and probably reset by stop

	//generate bit-counter
	always @(posedge scl)
	  if(ld)
	    bit_cnt <= #1 3'b111;
	  else
	    bit_cnt <= #1 bit_cnt - 3'h1;

	//generate access done signal
	assign acc_done = !(|bit_cnt);

	// generate delayed version of sda
	// this model assumes a hold time for sda after the falling edge of scl.
	// According to the Phillips i2c spec, there s/b a 0 ns hold time for sda
	// with regards to scl. If the data changes coincident with the clock, the
	// acknowledge is missed
	// Fix by Michael Sosnoski
	assign #1 sda_dly = sda;


	//detect start condition
	always @(negedge sda)
	  if(scl)
	    begin
	        sta   <= #1 1'b1;
		d_sta <= #1 1'b0;
		sto   <= #1 1'b0;

	        if(debug)
	          $display("DEBUG i2c_slave; start condition detected at %t", $time);
	    end
	  else
	    sta <= #1 1'b0;

	always @(posedge scl)
	  d_sta <= #1 sta;

	// detect stop condition
	always @(posedge sda)
	  if(scl)
	    begin
	       sta <= #1 1'b0;
	       sto <= #1 1'b1;

	       if(debug)
	         $display("DEBUG i2c_slave; stop condition detected at %t", $time);
	    end
	  else
	    sto <= #1 1'b0;

	//generate i2c_reset signal
	assign i2c_reset = sta || sto;

	// generate statemachine
	always @(negedge scl or posedge sto)
	  if (sto || (sta && !d_sta) )
	    begin
	        state <= #1 idle; // reset statemachine

	        sda_o <= #1 1'b1;
	        ld    <= #1 1'b1;
	    end
	  else
	    begin
	        // initial settings
	        sda_o <= #1 1'b1;
	        ld    <= #1 1'b0;

	        case(state) // synopsys full_case parallel_case
	            idle: // idle state
	              if (acc_done && my_adr)
	                begin
	                    state <= #1 slave_ack;
	                    rw <= #1 sr[0];
	                    sda_o <= #1 1'b0; // generate i2c_ack

	                    #2;
	                    if(debug && rw)
	                      $display("DEBUG i2c_slave; command byte received (read) at %t", $time);
	                    if(debug && !rw)
	                      $display("DEBUG i2c_slave; command byte received (write) at %t", $time);

	                    if(rw)
	                      begin
	                          mem_do <= #1 mem[mem_adr];

	                          if(debug)
	                            begin
	                                #2 $display("DEBUG i2c_slave; data block read %x from address %x (1)", mem_do, mem_adr);
	                                #2 $display("DEBUG i2c_slave; memcheck [0]=%x, [1]=%x, [2]=%x", mem[4'h0], mem[4'h1], mem[4'h2]);
	                            end
	                      end
	                end

	            slave_ack:
	              begin
	                  if(rw)
	                    begin
	                        state <= #1 data;
	                        sda_o <= #1 mem_do[7];
	                    end
	                  else
	                    state <= #1 get_mem_adr;

	                  ld    <= #1 1'b1;
	              end

	            get_mem_adr: // wait for memory address
	              if(acc_done)
	                begin
	                    state <= #1 gma_ack;
	                    mem_adr <= #1 sr; // store memory address
	                    sda_o <= #1 !(sr <= 255); // generate i2c_ack, for valid address

	                    if(debug)
	                      #1 $display("DEBUG i2c_slave; address received. adr=%x, ack=%b", sr, sda_o);
	                end

	            gma_ack:
	              begin
	                  state <= #1 data;
	                  ld    <= #1 1'b1;
	              end

	            data: // receive or drive data
	              begin
	                  if(rw)
	                    sda_o <= #1 mem_do[7];

	                  if(acc_done)
	                    begin
	                        state <= #1 data_ack;
	                        mem_adr <= #2 mem_adr + 8'h1;
	                        sda_o <= #1 (rw && (mem_adr <= 15) ); // send ack on write, receive ack on read

	                        if(rw)
	                          begin
	                              #3 mem_do <= mem[mem_adr];

	                              if(debug)
	                                #5 $display("DEBUG i2c_slave; data block read %x from address %x (2)", mem_do, mem_adr);
	                          end

	                        if(!rw)
	                          begin
	                              mem[ mem_adr[3:0] ] <= #1 sr; // store data in memory

	                              if(debug)
	                                #2 $display("DEBUG i2c_slave; data block write %x to address %x", sr, mem_adr);
	                          end
	                    end
	              end

	            data_ack:
	              begin
	                  ld <= #1 1'b1;

	                  if(rw)
	                    if(sr[0]) // read operation && master send NACK
	                      begin
	                          state <= #1 idle;
	                          sda_o <= #1 1'b1;
	                      end
	                    else
	                      begin
	                          state <= #1 data;
	                          sda_o <= #1 mem_do[7];
	                      end
	                  else
	                    begin
	                        state <= #1 data;
	                        sda_o <= #1 1'b1;
	                    end
	              end

	        endcase
	    end

	// read data from memory
	always @(posedge scl)
	  if(!acc_done && rw)
	    mem_do <= #1 {mem_do[6:0], 1'b1}; // insert 1'b1 for host ack generation

	// generate tri-states
	assign sda = sda_o ? 1'bz : 1'b0;


	//
	// Timing checks
	//

	wire tst_sto = sto;
	wire tst_sta = sta;

	specify
	  specparam normal_scl_low  = 1300,
	            normal_scl_high = 600 ,
	            normal_tsu_sta  = 600 ,
	            normal_thd_sta  = 600 ,
	            normal_tsu_sto  = 600,
	            normal_tbuf     = 1300,

	            fast_scl_low  = 1300,
	            fast_scl_high =  600,
	            fast_tsu_sta  = 1300,
	            fast_thd_sta  =  600,
	            fast_tsu_sto  =  600,
	            fast_tbuf     = 1300;

	  $width(negedge scl, normal_scl_low);  // scl low time
	  $width(posedge scl, normal_scl_high); // scl high time

	  $setup(posedge scl, negedge sda &&& scl, normal_tsu_sta); // setup start
	  $setup(negedge sda &&& scl, negedge scl, normal_thd_sta); // hold start
	  $setup(posedge scl, posedge sda &&& scl, normal_tsu_sto); // setup stop

	  $setup(posedge tst_sta, posedge tst_sto, normal_tbuf); // stop to start time
	endspecify

endmodule


二  i2c_master_tb

`timescale 1 ns/1 ns
`include "../rtl/param.v"


module i2c_master_tb();

//时钟复位输入
    reg             clk     ;
    reg             rst_n   ;

//激励输入
    reg             req     ;
    reg     [3:0]   cmd     ;
    reg     [7:0]   din     ;

    //输出
    wire    [7:0]   dout    ;
    wire            done    ;
    wire            ack     ;
    wire            scl     ;
    wire            sda_i   ;
    wire            sda_o   ;
    wire            sda_oe  ;

    wire            sda     ;

    assign sda = sda_oe?sda_o:1'bz;
    assign sda_i = sda;

    //时钟周期定义
    parameter CYCLE    = 20;

    //复位时间定义
    parameter RST_TIME = 3 ;

    //模块例化
i2c_master u_i2c_master(
    /*input               */.clk         (clk       ),
    /*input               */.rst_n       (rst_n     ),

    /*input               */.req         (req       ),
    /*input       [3:0]   */.cmd         (cmd       ),
    /*input       [7:0]   */.din         (din       ),

    /*output      [7:0]   */.dout        (dout      ),
    /*output              */.done        (done      ),
    /*output              */.slave_ack   (ack       ),
    /*output              */.i2c_scl     (scl       ),
    /*input               */.i2c_sda_i   (sda_i     ),
    /*output              */.i2c_sda_o   (sda_o     ),
    /*output              */.i2c_sda_oe  (sda_oe    )   
    );

i2c_slave_model u_slave(
    .scl    (scl        ), 
    .sda    (sda        )
    );
    

    task traffic_gen;   
        input       [7:0]       data    ;
        input       [3:0]       command ;
        begin 
            #2;
            req = 1'b1;
            din = data;
            cmd = command;
            #(CYCLE*1);
            req = 1'b0;
            @(negedge done);
            #(CYCLE*1);
        end 
    endtask 

        //产生时钟
        initial begin
            clk = 1;
            forever
            #(CYCLE/2)
            clk=~clk;
        end

        //产生复位
        initial begin
        rst_n = 0;
        #(CYCLE*RST_TIME);
        rst_n = 1;
        end

    //激励
    initial begin
        #1;
        req = 0 ;
        cmd = 0 ;
        din = 0 ;
        #(10*CYCLE);
        //字节写
        traffic_gen(`WR_ID,{`CMD_START | `CMD_WRITE});//发起始位 + 写控制字
        traffic_gen(8'ha1,`CMD_WRITE);                  //写字地址
        traffic_gen(8'hb2,{`CMD_WRITE |`CMD_STOP});     //发数据 + 停止位
        #(50*CYCLE);

        //随机地址读
        traffic_gen(`WR_ID,{`CMD_START | `CMD_WRITE});//发起始位 + 写控制字
        traffic_gen(8'ha1,`CMD_WRITE);                          //写字地址
        traffic_gen(`RD_ID,{`CMD_START | `CMD_WRITE});//发起始位 + 发读控制字
        traffic_gen(8'h00,{`CMD_READ | `CMD_STOP});             //读数据 + 发停止位

        #(100*CYCLE);
        $stop;

    end



endmodule

三 top_tb

`timescale 1 ns/1 ns

module top_tb();

//时钟复位
    reg             clk         ;
    reg             rst_n       ;

//输入
    reg     [7:0]   tx_din      ;
    reg             tx_din_vld  ;
    reg             key         ;
    
    reg     [7:0]   rand_data   ;//产生随机数输入
//输出
    wire            uart_txd    ;

    wire            busy        ;
    wire            tx_bit      ;
    wire            i2c_scl     ;
    wire            i2c_sda     ;


    //时钟周期定义
    parameter CYCLE    = 20;

    //复位时间定义
    parameter RST_TIME = 3 ;

    //模块例化
uart_tx u_tx(
    /*input               */.clk         (clk       ),
    /*input               */.rst_n       (rst_n     ),
    /*input       [1:0]   */.baud_sel    (2'd3      ),//选择波特率
    /*input               */.tx_byte_vld (tx_din_vld),//相当于一个发送请求
    /*input       [7:0]   */.tx_byte     (tx_din    ),
    /*output              */.busy        (busy      ),//忙状态指示  握手信号
    /*output              */.tx_dout     (tx_bit    )
);
i2c_eeprom u_top(
    /*input               */.clk         (clk       ),
    /*input               */.rst_n       (rst_n     ),

    //uart
    /*input               */.uart_rxd    (tx_bit    ),
    /*output              */.uart_txd    (uart_txd  ),

    //key
    /*input               */.key_in      (key       ),

    //eeprom
    /*output              */.i2c_scl     (i2c_scl   ),
    /*inout               */.i2c_sda     (i2c_sda   )
);

i2c_slave_model u_slave(
    .scl    (i2c_scl    ), 
    .sda    (i2c_sda    )
);

    defparam u_top.u_key.TIME_20MS = 10;

    task TX;   
        input       [7:0]       data    ;
        begin 
            tx_din_vld  = 1'b1;
            tx_din = data;
            #(1*CYCLE);
            tx_din_vld = 1'b0;
            @(negedge busy);
            #(1*CYCLE);
        end 
    endtask 

    integer i = 0,j = 0,k=0;

//产生时钟
    initial begin
        clk = 1;
        forever
        #(CYCLE/2)
        clk=~clk;
    end

//产生复位
    initial begin
        rst_n = 1;
        #2;
        rst_n = 0;
        #(CYCLE*RST_TIME);
        rst_n = 1;
    end

//产生激励
    initial begin
        #1;
        tx_din     = 0;
        tx_din_vld = 0;
        rand_data  = 0;
        #(10*CYCLE);
        for(i=0;i<100;i=i+1)begin 
            rand_data = {$random};
            TX(rand_data);
        end 
        #(1000*CYCLE);
    end

    initial begin 
        #1;
        key        = 1; 
        while(j<50)begin        //串口发送50个字节之后
            @(negedge busy);
            j = j + 1;
        end    
        #(100*CYCLE);
        for(j=0;j<10;j=j+1)begin   //模拟按键按下
            k = {$random}%50;
            key = {$random};
            #(k*CYCLE); 
            #(50000*CYCLE);
        end 
        key        = 1; 
        #(1000*CYCLE);
        $stop;
    end 
    initial begin
	$dumpfile("./build/wave.vcd");  // 指定VCD文件的名字为wave.vcd,仿真信息将记录到此文件
	$dumpvars(0, top_tb );  // 指定层次数为0,则tb_code 模块及其下面各层次的所有信号将被记录
	#10000 $finish;
end
endmodule

你可能感兴趣的:(fpga开发)