- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- Thanos架构学习
qq_道可道
监控K8S与容器架构
Thanos架构学习简介Thanos有两种架构模式sidecar部署receiver部署组件概念及说明简介官网参考Thanos基于prometheus,在此基础上提供了全局指标查询,可将多个云/region的prometheus数据集中管理,并且将数据直接存储到廉价的对象存储,可以存放更久的数据(并对历史数据进行压缩与降采样),降低本地prometheus存储费用,同时可与现有的prometheu
- Pytorch 三小时极限入门教程
power-辰南
人工智能深度学习pytorch人工智能
一、引言在当今的人工智能领域,深度学习占据了举足轻重的地位。而Pytorch作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解Pytorch的核心知识,助你顺利踏上深度学习的征程。二、Pytorch基础环境搭建安装An
- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- 手把手教你使用 Python 制作贪吃蛇游戏|Python游戏
程序员CC_
Python教程python学pythonpygamepython开发语言
贪吃蛇游戏是有史以来最受欢迎的街机游戏之一。在这个游戏中,玩家的主要目标是在不撞墙或不撞墙的情况下抓住最大数量的水果。在学习Python或Pygame时,可以将创建蛇游戏视为一项挑战。这是每个新手程序员都应该接受的最好的初学者友好项目之一。学习构建视频游戏是一种有趣而有趣的学习。我们将使用Pygame来创建这个蛇游戏。Pygame是一个开源库,专为制作视频游戏而设计。它具有内置的图形和声音库。它也
- midjourney初学者必看(迅速入门)
会飞the羊
midjourney
Midjourney初步学习:基本操作流程:-新建一个服务器-在输入框里添加MJROBOT:https://discord.com/oauth2/authorize?client_id=936929561302675456&permissions=2147601472&scope=applications.commands%20bot-输入/→选择imagine开始写prompt-prompt使用
- 【数据分析岗】关于数据分析岗面试python的金典问题+解答,包含数据读取、数据清洗、数据分析、机器学习等内容
摇光~
数据分析面试python
大家好,我是摇光~,用大白话讲解所有你难懂的知识点最近和几个大佬交流了,说了很多关于现在职场面试等问题,然后也找他们问了问他们基本面试的话都会提什么问题。所以我收集了很多关于python的面试题,希望对大家面试有用。类别1:数据读取与处理问题1:如何用Python从Excel文件中读取数据?答:在Python中,可以使用pandas库从Excel文件中读取数据。pandas提供了read_exce
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- JavaWeb原生框架开发JSP+Servlet+JDBC案例
秦老师Q
JavaWeb基础javaservlet开发语言
目录概要功能技术名词解释技术细节1.项目列表2.网页3.Servlet小结概要JavaWeb开发案例,使用JSP、Servlet、JDBC原生框架技术,实现用户模块的功能开发,主要用于学习。功能1.注册2.登录3.用户模块3.1查询用户信息3.2删除用户信息3.3修改用户信息技术名词解释JSP:全称JavaServerPages,是由Sun公司主导创建的一种动态网页技术标准,JSP中可以编写Jav
- EL表达式与JSTL标签库详解
秦老师Q
JavaWeb基础java
前言本章主要学习EL表达式与JSTL标签库,用于简化JSP数据操作。收录JavaWeb基础系列,该系列主要学习JavaWeb开发原生框架、Servlet、JSP、request请求对象、response响应对象、Session会话对象、Filter过滤器、EL表达式、JSTL标签库、三层开发模型等知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标一、EL表达式1.概念2.语法3.示例4.EL
- MySQL第一章 dos窗口mysql命令合集(超详细!!!)一篇就够了
秦老师Q
MySQL数据库基础mysqladb数据库database
前言:本章节主要学习MySQL数据库在dos窗口下的基础命令,sql语句等相关知识点,收录于MySQL基础系列,该系列主要讲解MySQL数据库dos命令/sql约束/sql语句/sql连接查询等相关知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标:1连接Mysql1.1连接本机上的MYSQL1.2连接远程主机上的MYSQL1.3退出MYSQL命令2修改密码2.1给root加个密码ab122
- 盘点ECMAScript 2024的新提案
前端
前面我们了解了ECMAScript2024(ES15)的5个新特性,现在我们继续学习一下其他令人耳目一新的提案吧。1.模式匹配(初期阶段)JavaScript变得更智能了,有了模式匹配!想象它就像一个超强大的switch语句,可以处理复杂的数据结构。ES15允许你简单地匹配模式,而不是编写一堆嵌套的条件语句来检查对象的形状。️旧方式functioncheckAnimal(animal){if(an
- mac运行第一个java_Mac下第一个java-servelet程序
老纪聊数码
mac运行第一个java
可学习到:设置环境变量方便运行命令和编译程序。servlet-api.jar中包括了servlet相关的api和类tomcat是servlet的容器,没有容器程序跑不起来。tomcat下载地址:http://tomcat.apache.org/我下载的是:apache-tomcat-7.0.67.tar.gz解压开之后放到usr/local目录中tomcat目录启动/usr/local/apach
- Python学习day14 BBS功能和聊天室
weixin_30725467
json数据库前端ViewUI
Createdon2017年5月15日@author:louts第1课作业讲解及装饰器使用28minutesdefcheck(func):defrec(request,*args,**kargs):returnfunc(request,*args,**kargs)returnrec@checkdefindex(request,):printrequest第2课自定义装饰器扩展使用18minutes
- 【论文翻译】GOT-OCR论文翻译——General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
机器白学
论文翻译ocr论文阅读论文翻译
论文原文链接:https://arxiv.org/abs/2409.01704特别声明,本文不做任何商业用途,仅作为个人学习相关论文的翻译记录。本文对原文内容直译,一切以论文原文内容为准,对原文作者表示最大的敬意。如有任何侵权请联系我下架相关文章。目录通用OCR理论:通过统一的端到端模型迈向OCR-2.00摘要1引言2相关工作2.1传统OCR2.2基于LVLM的OCR3通用OCR理论3.1框架3.
- 深度学习(1)
浅忆へ梦微凉
深度学习人工智能深度学习学习方法python
一、torch的安装基于直接设备情况,选择合适的torch版本,有显卡的建议安装GPU版本,可以通过nvidia-smi命令来查看显卡驱动的版本,在官网中根据cuda版本,选择合适的版本号,下面是安装示例代码GPU:pipinstalltorch==2.5.0torchvision==0.20.0torchaudio==2.5.0--index-urlhttps://download.pytorc
- 提升数据科学工作流效率的10个Jupyter Notebook高级特性
JupyterNotebooks已成为数据科学家、机器学习工程师和Python开发人员的核心开发工具。其核心优势在于提供了一个集成式环境,支持代码执行、文本编辑和数据可视化的无缝整合。尽管大多数用户熟悉其基本功能,但许多能显著提升工作效率的高级特性往往被忽视。本文将介绍一些高级功能,帮助您在数据科学项目中充分发挥JupyterNotebooks的潜力。1、Magic命令:高效的命令行接口Jupyt
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 文心一言 vs gpt-4 全面横向比较
周盛欢
文心一言
文心一言是中国百度公司研发的大规模语言模型,它有超多的参数,就像一个超级大脑,特别擅长理解并生成中文内容。在聊天啊、写文章啊、答题这些任务上表现不错,对中国文化和国情有更深的理解和适应能力。GPT-3.5是OpenAI公司的上一代大模型,比GPT-3更智能一些。而GPT-4作为其升级版,大家预计它会有更大的模型参数量,更强的学习和推理能力,可能会在各种语言任务上实现更大突破。所以,如果拿文心一言跟
- 深度学习常用格式转化脚本xml2yolo/coco2yolo/bdd2yolo/frame2video等
qq1309399183
计算机视觉实战项目集合深度学习人工智能格式转化脚本voc2yolo格式转化数据集格式转换xml2yolococo2yolo
文章目录1.**数据集格式转换脚本**`coco2yolo.py`示例注释:注释说明:`xml2yolo.py`示例注释:注释说明:2.**数据集可视化与统计**`vis_yolo_files.py`示例注释:注释说明:3.**其他工具脚本**`frames2video.py`示例注释:注释说明:该项目提供了一系列用于深度学习的数据处理工具,主要功能包括:数据集格式转换:提供多种脚本,将不同格式的
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 【LLM】大语言模型(LLMs)
林九生
人工智能语言模型人工智能自然语言处理
大型语言模型(LLMs)1.什么是大型语言模型?大型语言模型(LargeLanguageModel,LLM)是基于深度学习的自然语言处理模型,能够理解和生成自然语言文本。它们通过在大规模文本数据上进行训练,学习语言的语法、语义和各种语言特征,从而可以执行诸如文本生成、翻译、总结、问答等多种语言任务。以下是大型语言模型的定义和基本原理:1.1定义大型语言模型是由大量参数组成的神经网络,这些参数通过在
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- 《AI语言模型的关键技术探析:系统提示、评估方法与提示工程》
XianxinMao
人工智能语言模型自然语言处理
文章主要内容摘要1.系统提示(SystemPrompt)定义:用于设置模型行为、角色和工作方式的特殊指令重要性:定义模型行为边界影响输出质量和一致性可将通用模型定制为特定领域助手挑战:技术集成复杂兼容性问题效果难以精确预测2.模型评估方法创新方向:自一致性(Self-Consistency)评估PlanSearch方法强化学习(RL)应用核心特点:多次采样和交叉验证策略空间探索动态权重调整实践价值
- node笔记05——Nodejs学习之Express中间件与接口的编写,GET和POST接口的编写和案例演示。
noahsark747
学习中间件前端
认识expressexpress是基于Node.js平台的web开发框架作用和Node.js内置的http模块类似,是专门用来创建Web服务器的。本质上Express就是一个npm的第三方包提供了快速创建Web服务器的便捷方法。中文官网:expressjs.com.cnexpress的作用:快速方便的创建Web网站服务器和API接口服务器express的基本使用一、下载express包npmiex
- JavaWeb开发 - Filter过滤器详解
秦老师Q
JavaWeb基础javawebjava-ee
前言本章节主要学习JavaWeb开发中的Filter过滤器技术,收录于JavaWeb基础专栏,该专栏主要学习JavaWeb开发原生框架、Servlet、JSP、请求对象、响应对象、Session会话对象、Filter过滤器、三层开发模型等知识点,欢迎童鞋们互相交流。觉得不错可以三连订阅喔。目标1.概念2.Filter介绍3.入门案例4.验证登录案例4.1登录代码4.2过滤器验证内容1.概念Filt
- 【Python】已解决:ModuleNotFoundError: No module named ‘sklearn‘
屿小夏
pythonsklearn人工智能
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- TiDB
Drems 凉兮
分布式
架构原理及安装部署第一天:学习任务【PCTA备考指南1/16】TiDB架构原理及安装部署:https://asktug.com/t/topic/34500第二天:学习任务【PCTA备考指南2/16】TiDB使用管理手册:https://asktug.com/t/topic/34505第三天:学习任务【PCTA备考指南3/16】TiDB管理工具:https://asktug.com/t/topic/
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key