Openpcdet yaml 配置文件解读
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
POINT_CLOUD_RANGE: [0, -39.68, -3, 69.12, 39.68, 1]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': False
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.16, 0.16, 4]
MAX_POINTS_PER_VOXEL: 32
MAX_NUMBER_OF_VOXELS: {
'train': 16000,
'test': 40000
}
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
USE_ROAD_PLANE: True
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:15','Pedestrian:15', 'Cyclist:15']
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: False
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
MODEL:
NAME: PointPillar
VFE:
NAME: PillarVFE
WITH_DISTANCE: False
USE_ABSLOTE_XYZ: True
USE_NORM: True
NUM_FILTERS: [64]
MAP_TO_BEV:
NAME: PointPillarScatter
NUM_BEV_FEATURES: 64
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [3, 5, 5]
LAYER_STRIDES: [2, 2, 2]
NUM_FILTERS: [64, 128, 256]
UPSAMPLE_STRIDES: [1, 2, 4]
NUM_UPSAMPLE_FILTERS: [128, 128, 128]
DENSE_HEAD:
NAME: AnchorHeadSingle
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True
DIR_OFFSET: 0.78539
DIR_LIMIT_OFFSET: 0.0
NUM_DIR_BINS: 2
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-1.78],
'align_center': False,
'feature_map_stride': 2,
'matched_threshold': 0.6,
'unmatched_threshold': 0.45
},
{
'class_name': 'Pedestrian',
'anchor_sizes': [[0.8, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 2,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
},
{
'class_name': 'Cyclist',
'anchor_sizes': [[1.76, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 2,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
}
]
TARGET_ASSIGNER_CONFIG:
NAME: AxisAlignedTargetAssigner
POS_FRACTION: -1.0
SAMPLE_SIZE: 512
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False
BOX_CODER: ResidualCoder
"""
1、分类损失计算:代码在pcdet/models/dense_heads/anchor_head_template.py
与之对应的focal_loss分类计算的详细实现代码在:pcdet/utils/loss_utils.py
2、box的回归SmoothL1损失计算和方向分类损失计算:代码在:pcdet/models/dense_heads/anchor_head_template.py
3.box cls target assignment代码在:pcdet/models/dense_heads/anchor_head_template.py
4.方向回归的smoothL1计算 ,代码在pcdet/utils/loss_utils.py
5.方向分类损失计算:代码在pcdet/utils/loss_utils.py
"""
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'dir_weight': 0.2,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
"""
后处理
1. 根据index和mask进行box和cls进行筛选
2. 对该帧点云进行NMS
3. 计算召回率
4. 返回该batch的预测结果和recall
代码在 pcdet\models\detectors\detector3d_template.py
"""
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.01
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION:
"""
构建学习率调度器:三种方式adam_onecycle、LambdaLR、CosineWarmupLR
Args:
optimizer:优化器
total_iters_each_epoch:一个epoch的迭代次数:982
total_epoch:总共的epoch数:80
last_epoch:上一次的epoch_id
optim_cfg:优化配置
"""
BATCH_SIZE_PER_GPU: 4
NUM_EPOCHS: 80
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10