神经网络可以用来预测吗,神经网络怎么预测数据

如何人工神经网络来预测下一个数值

newff函数建立BP神经网络,历史数据作为样本,例如前n个数据作为输入,输入节点为n。当前数据作为p,输出节点为1。隐层节点根据试凑法得到。

通过matlab的train函数,得到训练好的BP神经网络。再将当前预测点的前n个数据作为输入,输出即为当前的预测值。

谷歌人工智能写作项目:神经网络伪原创

求助:用神经网络做一个数据预测

文案狗

下列代码为BP神经网络预测37-56周的销售量的代码:%x为原始序列load销售量.matdata=Cx=data';t=1:length(x);lag=2;fn=length(t);[f_out,iinput]=BP(x,lag,fn);%预测年份或某一时间段t1=fn:fn+20;n=length(t1);t1=length(x)+1:length(x)+n;%预测步数为fnfn=length(t1); [f_out,iinput]=BP(x,lag,fn);P=vpa(f_out,5);[t1'P']%画出预测图figure(6),plot(t,x,'b*-'),holdonplot(t(end):t1(end),[iinput(end),f_out],'rp-'),gridonxlabel('周数'),ylabel('销售量');str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];title(str)str1=['1-',num2str(length(x)),'周的销售量'];str2=[num2str(length(x)+1),'-',num2str(length(x)+20),'周的预测销售量'];legend(str1,str2)运行结果。

如何利用训练好的神经网络进行预测

如何用神经网络实现连续型变量的回归预测?

神经网络最开始是机器学习的一种模型,但其训练的时间和其他几种模型相比不占优势,且结果也不尽人意,所以一直没有被广泛使用。

但随着数学的深入研究以及计算机硬件质量的提高,尤其是GPU的出现,给深度学习的广泛应用提供了基础。

GPU最初是为了给游戏玩家带来高质量的视觉体验,由于其处理矩阵运算的能力特别优秀,也被用于深度学习中模型的训练,以往数十天才能训练好的模型在GPU上训练几天就可以训练好,大大减少了深度学习的训练时间,因而深度学习的应用越来越多。

神经网络作为深度学习最主要的模型,人工神经网络ANN是最基础的神经网络结构,其工作原理很像人类大脑中的神经。

神经元是ANN的工作单元,每个神经元含有权重和偏置,神经元将上一层神经元传递过来的值通过权重和偏置的运算,得到新的结果,将该结果传递给下一层神经元,通过不断的传递,最终获得输出结果。

要想用神经网络实现连续型变量的回归预测,需要将该N维变量的数据作为输入,中间再设置隐藏层和每一层的神经元个数,至于隐藏层的层数则需要多次训练才能得出较准确的层数。

而最后输出层的值和实际变量的值会有误差,神经网络会通过不断地训练,更改权重和偏置的值来使误差尽可能的小,当误差小到一定程度,该神经网络的回归预测就算成功了。

通常使用Python来搭建神经网络,Python自带深度学习的一些库,在进行回归预测时,我们只需用调用函数,设定几个参数,如隐藏层层数和神经元个数等,剩下的就是等模型自行训练,最终便能完成回归预测,非常的方便。

如何建立bp神经网络预测 模型

建立BP神经网络预测模型,可按下列步骤进行:1、提供原始数据2、训练数据预测数据提取及归一化3、BP网络训练4、BP网络预测5、结果分析现用一个实际的例子,来预测2015年和2016年某地区的人口数。

已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人执行BP_main程序,得到[2015, 5128.呵呵3946380615234375][2016,5100.5797325642779469490051269531]代码及图形如下。

如何利用matlab进行神经网络预测

matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。

核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.01;=0.01;%网络训练net=train(net,inputn,outputn);%%BP网络预测%预测数据归一化inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出an=sim(net,inputn_test);%网络输出反归一化BPoutput=mapminmax('reverse',an,outputps);%%结果分析。

请问:如何用人工神经网络来进行预测? 35

用第1月到第25月的输入数据,和第1月到第25月的输出数据作为网络的训练数据,然后将你第26月的对应的输入作为网络的输入,就可以得出第26月的输出。

你可以在网上下个别人使用过的神经网络的模板或工具箱,修改成自己需要的就是了。

利用RBF神经网络做预测

在命令栏敲nntool,按提示操作,将样本提交进去。还有比较简单的是用广义RBF网络,直接用grnn函数就能实现,基本形式是y=grnn(P,T,spread),你可以用helpgrnn看具体用法。

GRNN的预测精度是不错的。广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。

从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。

注意广义RBF网络只要求隐藏层神经元个数大于输入层神经元个数,并没有要求等于输入样本个数,实际上它比样本数目要少得多。

因为在标准RBF网络中,当样本数目很大时,就需要很多基函数,权值矩阵就会很大,计算复杂且容易产生病态问题。

另外广RBF网与传统RBF网相比,还有以下不同:1.径向基函数的中心不再限制在输入数据点上,而由训练算法确定。2.各径向基函数的扩展常数不再统一,而由训练算法确定。

3.输出函数的线性变换中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。

因此广义RBF网络的设计包括:1.结构设计--隐藏层含有几个节点合适2.参数设计--各基函数的数据中心及扩展常数、输出节点的权值。

采用什么手段使神经网络预测更加准确

优化神经网络结构。如BP神经网络改变隐层神经元数量、训练算法等;使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。

RBF神经网络的训练速度很快,训练效果也很好。改进的神经网络算法。例如BP神经网络增加动量项、自适应学习率等措施,防止陷入局部极小影响预测效果。组合神经网络。

取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。全面考虑影响因素。

未来的预测值受许多因素影响,所以应该在基于历史数据的基础上,充分考虑各种因素,考虑得越周全,预知信息越多,预测效果一般更好。

 

你可能感兴趣的:(html,神经网络,机器学习,深度学习,CG)