利用BP算法不调用机器学习库手搓MLP神经网络

利用BP算法不调用机器学习库手搓MLP神经网络


题目:BP算法,可调层数感知机MLP,mnibatch,不调用已有机器学习库,利用MNIST数据集,准确度95-97%

解答:
下面展示完整代码

import os
import struct
import numpy as np
import matplotlib.pyplot as plt
import time

def load_mnist(path, kind='train'):
    """Load MNIST data from `path`"""
    labels_path = os.path.join(path,
                               '%s-labels.idx1-ubyte'
                               %kind)
    images_path = os.path.join(path,
                               '%s-images.idx3-ubyte'
                               %kind)
    with open(labels_path, 'rb') as lbpath:
        magic, n = struct.unpack('>II',
                                 lbpath.read(8))
        labels = np.fromfile(lbpath,
                             dtype=np.uint8)

    with open(images_path, 'rb') as imgpath:
        magic, num, rows, cols = struct.unpack('>IIII',
                                               imgpath.read(16))
        images = np.fromfile(imgpath,
                             dtype=np.uint8).reshape(len(labels), 784)
    
    #处理标签成(6000010)形状
    new_labels=[]
    for i in labels:
        if   i==0:
            new_labels.append([1,0,0,0,0,0,0,0,0,0])
        elif i==1:
            new_labels.append([0,1,0,0,0,0,0,0,0,0])
        elif i==2:
            new_labels.append([0,0,1,0,0,0,0,0,0,0])
        elif i==3:
            new_labels.append([0,0,0,1,0,0,0,0,0,0])
        elif i==4:
            new_labels.append([0,0,0,0,1,0,0,0,0,0])
        elif i==5:
            new_labels.append([0,0,0,0,0,1,0,0,0,0])
        elif i==6:
            new_labels.append([0,0,0,0,0,0,1,0,0,0])
        elif i==7:
            new_labels.append([0,0,0,0,0,0,0,1,0,0])
        elif i==8:
            new_labels.append([0,0,0,0,0,0,0,0,1,0])
        else:
            new_labels.append([0,0,0,0,0,0,0,0,0,1])
    #输出在0-1之间
    return images/255, np.array(new_labels)

def sigmoid(z, first_derivative=False):
    x=1.0/(1.0+np.exp(-z))
    if first_derivative:
        return x*(1.0-x)
    else:
        return x

def verify_validity(x_data,y_data,N):
    newh=[]
    newz=[]
    for j in range(k):
        if j==0:
            newz.append(np.matmul(x_data[:N],w[j])+np.matmul(np.ones(shape=(N,1)),b[j]))
            newh.append(sigmoid(newz[j])) 
        else:
            newz.append(np.matmul(newh[j-1],w[j])+np.matmul(np.ones(shape=(N,1)),b[j]))
            newh.append(sigmoid(newz[j]))
    for j in range(k):
        if j==0:
            newz[j]=np.matmul(x_data[:N],w[j])+np.matmul(np.ones(shape=(N,1)),b[j])
            newh[j]=sigmoid(newz[j])
        else:
            newz[j]=np.matmul(newh[j-1],w[j])+np.matmul(np.ones(shape=(N,1)),b[j])
            newh[j]=sigmoid(newz[j])
            
    y_predict = np.argmax(newh[k-1], axis=1)
    # print("y_predict:",y_predict)
    y_actual = np.argmax(y_data[:N], axis=1)
    accuracy = np.sum(np.equal(y_predict,y_actual))/len(y_actual)
    #损失函数:
    loss=np.square(y_data[:N]-newh[k-1]).sum()/(2*N)
    #训练过程损失
    return loss,accuracy

def visualize_result(save_path,accuracies,losses):
    # if not os.path.exists(save_path):
    #     os.mkdir(r'%s' % save_path)
    # Accurary_name="Accuracy_input_dim_%d-hidden_dim_%d-output_dim_%d-num_epochs_%d-N_train_%d-N_test_%d-learning_rate_%f.png"%(input_dim,hidden_dim,output_dim,
    #                                                                                                         num_epochs,N_train,N_test,learning_rate)
    # Loss_name="Loss_input_dim_%d-hidden_dim_%d-output_dim_%d-num_epochs_%d-N_train_%d-N_test_%d-learning_rate_%f.png"%(input_dim,hidden_dim,output_dim,
    #                                                                                                     num_epochs,N_train,N_test,learning_rate)
    #准确率画图
    plt.plot(accuracies[:,0],accuracies[:,1],label='Accuracy_train')
    plt.plot(accuracies[:,0],accuracies[:,2],label='Accuracy_test')
    # plt.title("Accuracy_input_dim=%d,hidden_dim=%d,output_dim=%d,\n num_epochs=%d,N_train=%d,N_test=%d,learning_rate=%f"%(input_dim,hidden_dim,output_dim,
    #                                                                                                     num_epochs,N_train,N_test,learning_rate))
    plt.xlabel("Epoch")
    plt.ylabel("Accuracy")
    plt.legend(loc='best')
    plt.show()
    # plt.savefig(os.path.join(save_path,Accurary_name), dpi=300)
    # plt.close("all")
    #损失函数画图
    plt.plot(losses[:,0],losses[:,1],label='Loss_train')
    plt.plot(losses[:,0],losses[:,2],label='Loss_test')
    # plt.title("Loss_input_dim=%d,hidden_dim=%d,output_dim=%d,\n num_epochs=%d,N_train=%d,N_test=%d,learning_rate=%f"%(input_dim,hidden_dim,output_dim,
    #                                                                                                     num_epochs,N_train,N_test,learning_rate))
    plt.xlabel("Epoch")
    plt.ylabel("Loss")
    plt.legend(loc='best')
    plt.show()

def train():
    #初始化w、b
    for j in range(k):
        w.append(( 2*np.random.random((net_dim[j],net_dim[j+1])) - 1 )/1)
        b.append((2*np.random.random((1,net_dim[j+1])) - 1 )/1)
    #初始化z、h
    for j in range(k):
        if j==0:
            z.append(np.matmul(x_train[:min_batch],w[j])+np.matmul(np.ones(shape=(min_batch,1)),b[j]))
            h.append(sigmoid(z[j])) 
        else:
            z.append(np.matmul(h[j-1],w[j])+np.matmul(np.ones(shape=(min_batch,1)),b[j]))
            h.append(sigmoid(z[j]))
    #初始化残差delta  
    for j in range(k):
        if j==0:
            delta.append(-(y_train[:min_batch]-h[k-1])*sigmoid(z[k-1], first_derivative=True))
        else:
            delta.append(np.matmul(delta[j-1],w[k-j].T)*sigmoid(z[k-1-j], first_derivative=True))
    #计算loss
    for i in range(num_epochs):
        for num_bat in range(int(N_train/min_batch)):
            #前向传播:
            for j in range(k):
                if j==0:
                    z[j]=np.matmul(x_train[num_bat*min_batch:(num_bat+1)*min_batch],w[j])+np.matmul(np.ones(shape=(min_batch,1)),b[j])
                    h[j]=sigmoid(z[j])
                else:
                    z[j]=np.matmul(h[j-1],w[j])+np.matmul(np.ones(shape=(min_batch,1)),b[j])
                    h[j]=sigmoid(z[j])
            #损失函数:
            L=np.square(y_train[num_bat*min_batch:(num_bat+1)*min_batch]-h[k-1]).sum()/(2*min_batch)
            #反向传播:
            #计算残差:
            for j in range(k):
                if j==0:
                    delta[j]=-(y_train[num_bat*min_batch:(num_bat+1)*min_batch]-h[k-1])*sigmoid(z[k-1], first_derivative=True)
                else:
                    delta[j]=np.matmul(delta[j-1],w[k-j].T)*sigmoid(z[k-1-j], first_derivative=True)
            #权重和偏置更新:
            for j in range(k):
                if j==0:
                    w[0] += -learning_rate*np.matmul(x_train[num_bat*min_batch:(num_bat+1)*min_batch].T,delta[k-1])/min_batch
                    b[0] += -learning_rate*np.matmul(np.ones(shape=(min_batch,1)).T,delta[k-1])/min_batch
                else:
                    w[j] += -learning_rate*np.matmul(h[j-1].T,delta[k-1-j])/min_batch
                    b[j] += -learning_rate*np.matmul(np.ones(shape=(min_batch,1)).T,delta[k-1-j])/min_batch
         # 记录结果
        if True:
            #训练集准确度
            loss_train,accuracy_train = verify_validity(x_train,y_train,N_train)
            #测试集准确度
            loss_test,accuracy_test = verify_validity(x_test,y_test,N_test)
            #训练过程损失
            losses.append([i,loss_train,loss_test])
            accuracies.append([i,accuracy_train,accuracy_test])
        if i%1==0:
            print('Epoch: %d Loss:%f Loss_train:%f Loss_test:%f Accuracy_train: %f Accuracy_test: %f' %(i,L,loss_train,loss_test,accuracy_train,accuracy_test))
                
    return np.array(losses),np.array(accuracies)
      
if __name__ == '__main__':    
    #读取数据     
    folder_path='D:\\Code\\Nju_study\\'
    x_train,y_train=load_mnist(folder_path+'mnist','train') #(60000,input_dim),(60000,output_dim)
    x_test,y_test=load_mnist(folder_path+'mnist','t10k')    #(10000,input_dim),(10000,output_dim)
    #定义参数
    net_dim=[784,128,10]
    num_epochs = 50
    learning_rate= 1
    N_train=60000
    min_batch= 100
    N_test=10000
    k=len(net_dim)-1
    #定义变量
    losses = []
    accuracies=[]
    w=[]
    b=[]
    z=[]
    h=[]
    delta=[]  
    #开始训练
    print("==============================================================================================================================")
    start_time = time.time()                                          #训练开始时间
    losses,accuracies=train()
    end_time = time.time()                                            #训练结束时间
    run_time=end_time-start_time                                      #训练时间,单位为秒
    print("本次运行时间:%d h %d m %d s"%(run_time//3600,(run_time-run_time//3600*3600)//60,run_time%60))  
    #输出结果 
    visualize_result(folder_path+'learning_rate',accuracies,losses) 

下面展示结果

==============================================================================================================================
Epoch: 0 Loss:0.208053 Loss_train:0.187791 Loss_test:0.182892 Accuracy_train: 0.739783 Accuracy_test: 0.748900
Epoch: 1 Loss:0.144441 Loss_train:0.149888 Loss_test:0.145976 Accuracy_train: 0.789767 Accuracy_test: 0.799400
Epoch: 2 Loss:0.119358 Loss_train:0.134842 Loss_test:0.131591 Accuracy_train: 0.807383 Accuracy_test: 0.815000
Epoch: 3 Loss:0.104755 Loss_train:0.125744 Loss_test:0.123176 Accuracy_train: 0.817583 Accuracy_test: 0.822900
Epoch: 4 Loss:0.094766 Loss_train:0.119273 Loss_test:0.117325 Accuracy_train: 0.825100 Accuracy_test: 0.829200
Epoch: 5 Loss:0.086082 Loss_train:0.105821 Loss_test:0.105401 Accuracy_train: 0.885467 Accuracy_test: 0.885300
Epoch: 6 Loss:0.050557 Loss_train:0.067779 Loss_test:0.067928 Accuracy_train: 0.925033 Accuracy_test: 0.924100
Epoch: 7 Loss:0.044383 Loss_train:0.062873 Loss_test:0.063666 Accuracy_train: 0.930767 Accuracy_test: 0.928500
Epoch: 8 Loss:0.040248 Loss_train:0.059338 Loss_test:0.060657 Accuracy_train: 0.934583 Accuracy_test: 0.932600
Epoch: 9 Loss:0.037044 Loss_train:0.056478 Loss_test:0.058259 Accuracy_train: 0.938233 Accuracy_test: 0.935400
Epoch: 10 Loss:0.034462 Loss_train:0.054045 Loss_test:0.056255 Accuracy_train: 0.941000 Accuracy_test: 0.937800
Epoch: 11 Loss:0.032333 Loss_train:0.051919 Loss_test:0.054534 Accuracy_train: 0.943317 Accuracy_test: 0.939400
Epoch: 12 Loss:0.030551 Loss_train:0.050028 Loss_test:0.053031 Accuracy_train: 0.945450 Accuracy_test: 0.941500
Epoch: 13 Loss:0.029036 Loss_train:0.048329 Loss_test:0.051698 Accuracy_train: 0.947417 Accuracy_test: 0.942600
Epoch: 14 Loss:0.027730 Loss_train:0.046789 Loss_test:0.050504 Accuracy_train: 0.949033 Accuracy_test: 0.943700
Epoch: 15 Loss:0.026586 Loss_train:0.045385 Loss_test:0.049423 Accuracy_train: 0.950333 Accuracy_test: 0.945100
Epoch: 16 Loss:0.025569 Loss_train:0.044096 Loss_test:0.048438 Accuracy_train: 0.951733 Accuracy_test: 0.945600
Epoch: 17 Loss:0.024654 Loss_train:0.042906 Loss_test:0.047534 Accuracy_train: 0.953167 Accuracy_test: 0.946400
Epoch: 18 Loss:0.023821 Loss_train:0.041800 Loss_test:0.046700 Accuracy_train: 0.954550 Accuracy_test: 0.948400
Epoch: 19 Loss:0.023059 Loss_train:0.040768 Loss_test:0.045927 Accuracy_train: 0.955767 Accuracy_test: 0.949500
Epoch: 20 Loss:0.022358 Loss_train:0.039799 Loss_test:0.045207 Accuracy_train: 0.956983 Accuracy_test: 0.950000
Epoch: 21 Loss:0.021711 Loss_train:0.038887 Loss_test:0.044533 Accuracy_train: 0.957733 Accuracy_test: 0.950800
Epoch: 22 Loss:0.021112 Loss_train:0.038026 Loss_test:0.043902 Accuracy_train: 0.958750 Accuracy_test: 0.951700
Epoch: 23 Loss:0.020555 Loss_train:0.037211 Loss_test:0.043308 Accuracy_train: 0.959750 Accuracy_test: 0.951900
Epoch: 24 Loss:0.020036 Loss_train:0.036437 Loss_test:0.042749 Accuracy_train: 0.960633 Accuracy_test: 0.952300
Epoch: 25 Loss:0.019553 Loss_train:0.035702 Loss_test:0.042221 Accuracy_train: 0.961267 Accuracy_test: 0.952800
Epoch: 26 Loss:0.019101 Loss_train:0.035001 Loss_test:0.041721 Accuracy_train: 0.962167 Accuracy_test: 0.953600
Epoch: 27 Loss:0.018678 Loss_train:0.034333 Loss_test:0.041249 Accuracy_train: 0.962850 Accuracy_test: 0.954500
Epoch: 28 Loss:0.018283 Loss_train:0.033695 Loss_test:0.040801 Accuracy_train: 0.963783 Accuracy_test: 0.955100
Epoch: 29 Loss:0.017914 Loss_train:0.033085 Loss_test:0.040377 Accuracy_train: 0.964517 Accuracy_test: 0.955400
Epoch: 30 Loss:0.017570 Loss_train:0.032500 Loss_test:0.039975 Accuracy_train: 0.965250 Accuracy_test: 0.955900
Epoch: 31 Loss:0.017248 Loss_train:0.031940 Loss_test:0.039594 Accuracy_train: 0.965850 Accuracy_test: 0.956700
Epoch: 32 Loss:0.016949 Loss_train:0.031402 Loss_test:0.039231 Accuracy_train: 0.966417 Accuracy_test: 0.957100
Epoch: 33 Loss:0.016670 Loss_train:0.030886 Loss_test:0.038886 Accuracy_train: 0.966950 Accuracy_test: 0.957600
Epoch: 34 Loss:0.016410 Loss_train:0.030389 Loss_test:0.038559 Accuracy_train: 0.967633 Accuracy_test: 0.958300
Epoch: 35 Loss:0.016168 Loss_train:0.029911 Loss_test:0.038246 Accuracy_train: 0.968100 Accuracy_test: 0.958600
Epoch: 36 Loss:0.015943 Loss_train:0.029449 Loss_test:0.037949 Accuracy_train: 0.968783 Accuracy_test: 0.959100
Epoch: 37 Loss:0.015733 Loss_train:0.029004 Loss_test:0.037665 Accuracy_train: 0.969267 Accuracy_test: 0.959300
Epoch: 38 Loss:0.015537 Loss_train:0.028574 Loss_test:0.037394 Accuracy_train: 0.969783 Accuracy_test: 0.959600
Epoch: 39 Loss:0.015353 Loss_train:0.028158 Loss_test:0.037135 Accuracy_train: 0.970267 Accuracy_test: 0.959800
Epoch: 40 Loss:0.015181 Loss_train:0.027756 Loss_test:0.036888 Accuracy_train: 0.970617 Accuracy_test: 0.960100
Epoch: 41 Loss:0.015018 Loss_train:0.027367 Loss_test:0.036651 Accuracy_train: 0.970967 Accuracy_test: 0.960100
Epoch: 42 Loss:0.014863 Loss_train:0.026989 Loss_test:0.036424 Accuracy_train: 0.971450 Accuracy_test: 0.960200
Epoch: 43 Loss:0.014717 Loss_train:0.026623 Loss_test:0.036206 Accuracy_train: 0.972050 Accuracy_test: 0.960500
Epoch: 44 Loss:0.014577 Loss_train:0.026268 Loss_test:0.035997 Accuracy_train: 0.972433 Accuracy_test: 0.960700
Epoch: 45 Loss:0.014443 Loss_train:0.025923 Loss_test:0.035797 Accuracy_train: 0.972783 Accuracy_test: 0.961000
Epoch: 46 Loss:0.014315 Loss_train:0.025588 Loss_test:0.035604 Accuracy_train: 0.973050 Accuracy_test: 0.961100
Epoch: 47 Loss:0.014192 Loss_train:0.025262 Loss_test:0.035419 Accuracy_train: 0.973350 Accuracy_test: 0.961100
Epoch: 48 Loss:0.014074 Loss_train:0.024944 Loss_test:0.035241 Accuracy_train: 0.973633 Accuracy_test: 0.961100
Epoch: 49 Loss:0.013960 Loss_train:0.024635 Loss_test:0.035070 Accuracy_train: 0.974017 Accuracy_test: 0.961300
本次运行时间:0 h 2 m 20 s
利用BP算法不调用机器学习库手搓MLP神经网络_第1张图片
注意事项:
1.只需要改变文件路径就可以见下图对应复制代码即可用,能读到mnist数据集就可(注意解压mnist,注意后缀!!!读的是.idx3-ubyte文件)
利用BP算法不调用机器学习库手搓MLP神经网络_第2张图片
2.BP算法(自己查资料)写MLP别忘了从随机梯度下降到批量梯度下降,权重矩阵相乘之后取平均数

你可能感兴趣的:(神经网络,python,numpy,算法,神经网络)