CVPR 2022:Generalized Few-shot Semantic Segmentation 解读

文章目录

  • 1 前言
  • 2 概述
  • 3 GFS-Seg 和 FS-Seg 的 Pipeline 区别
  • 4 Towards GFS-Seg
  • 5 上下文感知原型学习(CAPL)
  • 6 实验
  • 7 结论
  • 8 参考链接

1 前言

之前已经有过关于小样本语义分割的论文解读,关于如何用 Transformer 思想的分类器进行小样本分割,链接见:https://mp.weixin.qq.com/s/YVg8aupmAxiu5lGTYrhpCg 。本篇是发表在 CVPR 2022 上的 Generalized Few-shot Semantic Segmentation(后文简称 GFS-Seg),既一种泛化的小样本语义分割模型。在看论文的具体内容之前,我们先了解一些前置知识。

深度学习是 Data hunger 的方法, 需要大量的数据,标注或者未标注。少样本学习研究就是如何从少量样本中去学习。拿分类问题来说,每个类只有一张或者几张样本。少样本学习可以分为 Zero-shot Learning(即要识别训练集中没有出现过的类别样本)和 One-Shot Learning/Few shot Learning(即在训练集中,每一类都有一张或者几张样本)。以 Zero-shot Learning 来说,比如有一个中文 “放弃”,要你从 I, your、 she、them 和 abnegation 五个单词中选择出来对应的英文单词,尽管你不知道“放弃”的英文是什么,但是你会将“放弃”跟每个单词对比,而且在你之前的学习中,你已经知道了 I、 your、she 和 them 的中文意思,都不是“放

你可能感兴趣的:(深度学习入门到精通系列讲解,机器学习,人工智能,深度学习)