java深度学习之DJL迁移学习

1、数据集很小,数据相似性很高

考虑这个kaggle数据集(https://www.kaggle.com/mriganksingh/cat-images-dataset)。这包括猫的图像和其他非猫的图像。它有209个像素64*64*3的训练图像和50个测试图像。这显然是一个非常小的数据集,但我们知道ResNet是在大量动物和猫图像上训练的,所以我们可以使用ResNet作为固定特征提取器来解决我们的猫与非猫的问题。

我们需要冻结除最后一层之外的所有网络。

2、数据的大小很小,数据相似性也很低

考虑来自(https://www.kaggle.com/kvinicki/canine-coccidiosis),这个数据集包含了犬异孢球虫和犬异孢球虫卵囊的图像和标签,异孢球虫卵囊是一种球虫寄生虫,可感染狗的肠道。它是由萨格勒布兽医学院创建的。它包含了两种寄生虫的341张图片。

这个数据集很小,而且不是Imagenet中的一个类别。在这种情况下,我们保留预先训练好的模型架构,冻结前几层并保留它们的权重,并训练后几层更新它们的权重以适应我们的问题。

 

3、数据集的大小很大,但数据相似性非常低

考虑这个来自kaggle,皮肤癌MNIST的数据集:HAM10000

其具有超过10015个皮肤镜图像,属于7种不同类别。这不是我们在Imagenet中可以找到的那种数据。

这就是我们只保留模型架构而不保留来自预训练模型的任何权重的地方。让我们重新定义输出层,将项目分类为7个类别。

4、数据大小很大,数据相似性很高

考虑来自kaggle 的鲜花数据集(https://www.kaggle.com/alxmamaev/flowers-recognition)。它包含4242个花卉图像。图片分为五类:洋甘菊,郁金香,玫瑰&#

你可能感兴趣的:(java深度学习)