HoughCirclesAlt 源码解读

 最近要做一个检圆的工作,大概看了一下opencv4的新函数HoughCirclesAlt 粗略写了一些注释

static void HoughCirclesAlt(const Mat& img, std::vector& circles, double dp, double rdMinDist,
	double minRadius, double maxRadius, double cannyThreshold, double minCos2)
{
	const int MIN_COUNT = 10;
	const int RAY_FP_BITS = 10;
	const int RAY_FP_SCALE = 1 << RAY_FP_BITS;  //1024 感觉是在参数空间放大的一个比例,我猜是更好保留精度
	const int ACCUM_FP_BITS = 6; //
	const int RAY_SHIFT2 = ACCUM_FP_BITS / 2;  //3 后面做一个位移运算
	const int ACCUM_ALPHA_ONE = 1 << RAY_SHIFT2; //8
	const int ACCUM_ALPHA_MASK = ACCUM_ALPHA_ONE - 1; //7
	const int RAY_SHIFT1 = RAY_FP_BITS - RAY_SHIFT2; //7
	const int RAY_DELTA1 = 1 << (RAY_SHIFT1 - 1); //64

	const double ARC_DELTA = 80;
	const double ARC_EPS = 0.03;
	const double CIRCLE_AREA_OFFSET = 4000;
	const double ARC2CLUSTER_EPS = 0.06;
	const double CLUSTER_MERGE_EPS = 0.075;
	const double FINAL_MERGE_DIST_EPS = 0.01;
	const double FINAL_MERGE_AREA_EPS = CLUSTER_MERGE_EPS; //0.075

	// 把最大半径和最小半径做了一下边界判断和修正,最小保证要大于1,最大不超过图片短边的一半
	if (maxRadius <= 0)
		maxRadius = std::min(img.cols, img.rows)*0.5;
	if (minRadius > maxRadius)
		std::swap(minRadius, maxRadius);
	maxRadius = std::min(maxRadius, std::min(img.cols, img.rows)*0.5);
	maxRadius = std::max(maxRadius, 1.);
	minRadius = std::max(minRadius, 1.);
	minRadius = std::min(minRadius, maxRadius);

	// 对cannyThreshold和dp做了一下修正,最小保证要大于1
	cannyThreshold = std::max(cannyThreshold, 1.);
	dp = std::max(dp, 1.);

	// 
	Mat Dx, Dy, edges;
	Scharr(img, Dx, CV_16S, 1, 0); // 求img在x方向的梯度。kernel为3x3
	Scharr(img, Dy, CV_16S, 0, 1); // 求img在y方向的梯度。kernel为3x3
	Canny(Dx, Dy, edges, cannyThreshold / 2, cannyThreshold, true); //用L2norm的canny边缘检测
	Mat mask(img.rows + 2, img.cols + 2, CV_8U, Scalar::all(0));
	double idp = 1. / dp;  //dp:像素空间分辨率/参数空间分辨率

	int minR = cvFloor(minRadius*idp); //参数空间下最小半径
	int maxR = cvCeil(maxRadius*idp);  //参数空间下最大半径
	int acols = cvRound(img.cols*idp); //参数空间下图片宽
	int arows = cvRound(img.rows*idp); //参数空间下图片高
	Mat accum(arows + 1, acols + 1, CV_32S, Scalar::all(0));
	int* adata = accum.ptr();
	int astep = (int)accum.step1();
	minR = std::max(minR, 1);
	maxR = std::max(maxR, 1);

	// edges,Dx,Dy,mask四个Mat的数据,这个时候mask还是全0
	const uchar* edgeData = edges.ptr();
	int estep = (int)edges.step1();
	const short* dxData = Dx.ptr();
	const short* dyData = Dy.ptr();
	int dxystep = (int)Dx.step1();
	uchar* mdata = mask.ptr();
	int mstep = (int)mask.step1();

	circles.clear();  //这是要传出去的那个circles
	std::vector nz;  //会存一些四元中间变量(点p的x坐标,点p的y坐标,dx梯度在点p的值,dy梯度在点p的值)

	std::vector stack; // 存一些符合标准的点
	const int n33[][2] = { { -1, -1 },{ -1, 0 },{ -1, 1 },{ 0, 1 },{ 1, 1 },{ 1, 0 },{ 1, -1 },{ 0, -1 } };

	// 这里mask赋值
	for (int x = 0; x < mask.cols; x++) mdata[x] = mdata[(mask.rows - 1)*mstep + x] = (uchar)1;
	for (int y = 0; y < mask.rows; y++) mdata[y*mstep] = mdata[y*mstep + mask.cols - 1] = (uchar)1;
	mdata += mstep + 1;


	for (int y = 0; y < edges.rows; y++)
	{
		for (int x = 0; x < edges.cols; x++)
		{
			if (!edgeData[y*estep + x] || mdata[y*mstep + x]) // 这里表示 非canny找到的边缘点 或者 mask上同位置上值非0 这个点就略过
				continue;

			mdata[y*mstep + x] = (uchar)1;
			stack.push_back(Point(x, y));
			bool backtrace_mode = false; // 这是啥

			do
			{
				Point p = stack.back();
				stack.pop_back();
				int vx = dxData[p.y*dxystep + p.x]; //原图在x方向梯度图在p点上的值
				int vy = dyData[p.y*dxystep + p.x]; //原图在y方向梯度图在p点上的值

				float mag = std::sqrt((float) vx*vx +(float)vy*vy);  //magnitude?
				nz.push_back(Vec4f((float)p.x, (float)p.y, (float)vx, (float)vy)); //那个四元变量
				CV_Assert(mdata[p.y*mstep + p.x] == 1); //确保mask上p点值为1(?)

				int sx = cvRound(vx * RAY_FP_SCALE / mag);	//sx=vx*1024/√(vx^2+vy^2)
				int sy = cvRound(vy * RAY_FP_SCALE / mag);

				int x0 = cvRound((p.x * idp) * RAY_FP_SCALE);  //x0=x/dp*1024 这是原图上点坐标在参数空间的对应坐标,1024感觉是放大的一个比例,可能是为了保留精度
				int y0 = cvRound((p.y * idp) * RAY_FP_SCALE);
				

				//在参数空间的两个方向上做了遍历,
				// Step from min_radius to max_radius in both directions of the gradient
				for (int k1 = 0; k1 < 2; k1++)
				{
					int x1 = x0 + minR * sx;
					int y1 = y0 + minR * sy;

					for (int r = minR; r <= maxR; x1 += sx, y1 += sy, r++)
					{
						//x2a= (x1 +(1<<6) )>>7, 算x1/2^7的整数部分,但是是每个2^7的区间对半分,大的那一半就近到+1的那个值,小的那一半就近到+0的那个值
						int x2a = (x1 + RAY_DELTA1) >> RAY_SHIFT1, y2a = (y1 + RAY_DELTA1) >> RAY_SHIFT1;
						
						// x2 = x2a>>3
						int x2 = x2a >> RAY_SHIFT2, y2 = y2a >> RAY_SHIFT2;
						if ((unsigned)x2 >= (unsigned)acols ||
							(unsigned)y2 >= (unsigned)arows)  //如果求的这个x2和y2超过边界就跳过这个循环
							break;

						// 这里对accum赋值,做了一个插值
						// instead of giving everything to the computed pixel of the accumulator,
						// do a weighted update of 4 neighbor (2x2) pixels using bilinear interpolation.
						// we do it to reduce the aliasing effect, even though it's slower 减少混叠/漂移效果(?)
						// ACCUM_ALPHA_ONE=8 ACCUM_ALPHA_MASK=7
						int* ptr = adata + y2*astep + x2;
						int a = (x2a & ACCUM_ALPHA_MASK), b = (y2a & ACCUM_ALPHA_MASK); //a和b是x2a和y2a的后三位,保证小于8
						ptr[0] += (ACCUM_ALPHA_ONE - a)*(ACCUM_ALPHA_ONE - b);
						ptr[1] += a*(ACCUM_ALPHA_ONE - b);
						ptr[astep] += (ACCUM_ALPHA_ONE - a)*b;
						ptr[astep + 1] += a*b;
					}

					sx = -sx; sy = -sy;
				}

				int neighbors = 0;
				for (int k = 0; k < 8; k++)
				{
					int dy = n33[k][0], dx = n33[k][1];
					int y_ = p.y + dy, x_ = p.x + dx;
					if (mdata[y_*mstep + x_] || !edgeData[y_*estep + x_])
						continue;
					mdata[y_*mstep + x_] = (uchar)1;
					stack.push_back(Point(x_, y_));
					neighbors++;
				}

				if (neighbors == 0)
				{
					if (backtrace_mode)
						nz.pop_back();
					backtrace_mode = true;
				}
				else
					backtrace_mode = false;
			} while (!stack.empty());
			// insert a special "stop marker" in the end of each
			// connected component to make sure we
			// finalize and analyze the arc segment
			nz.push_back(Vec4f(0.f, 0.f, 0.f, 0.f)); //这是一个停止标志(?)
		}
	}

	if (nz.empty())
		return;

	// use dilation with massive ((rdMinDisp/dp)*2+1) x ((rdMinDisp/dp)*2+1) kernel.
	// this trick helps us quickly find the local maxima of accumulator value
	// that are at least within the specified distance from each other.
	Mat accum_f, accum_max;
	accum.convertTo(accum_f, CV_32F);
	int niters = std::max(cvCeil(rdMinDist*idp), 1); //保证圆间最小距离不能小于1,然后根据这个值把accum做个膨胀(形态学)
	dilate(accum_f, accum_max, Mat(), Point(-1, -1), niters, BORDER_CONSTANT, Scalar::all(0));
	
	std::vector centers;

	// 找到符合要求的圆中心点find the possible circle centers
	for (int y = 0; y < arows; y++)
	{
		const float* adataf = accum_f.ptr(y);
		const float* amaxdata = accum_max.ptr(y);
		int left = -1;
		for (int x = 0; x < acols; x++)
		{
			if (adataf[x] == amaxdata[x] && adataf[x] > adataf[x + astep])
			{
				//这个left赋值一次,赋值完轮训到下一个x不满足上面的判断的时候就进入下面的那个判断里,然后再符合条件后进入本判断中
				if (left < 0) left = x; 
			}
			else if (left >= 0)
			{
				float cx = (float)((left + x - 1)*dp*0.5f);  //(left、x都是参数空间的值)left + x - 1是
				float cy = (float)(y*dp);
				centers.push_back(Point2f(cx, cy));
				left = -1;
			}
		}
	}

	if (centers.empty())
		return;

	//这里到图像像素空间 HOUGH_CIRCLES_ALT_BLOCK_SIZE=10
	float minR2 = (float)(minRadius*minRadius);
	float maxR2 = (float)(maxRadius*maxRadius);
	int nstripes = (int)((centers.size() + HOUGH_CIRCLES_ALT_BLOCK_SIZE - 1) / HOUGH_CIRCLES_ALT_BLOCK_SIZE);  //把候选圆10个10个的打包成批次
	const int nnz = (int)nz.size();
	Mutex cmutex;

	// Check each possible pair (edge_pixel[i], circle_center[j]).
	// For each circle form the clusters to identify possible radius values.
	// Several clusters (up to 10) are maintained to help to filter out false alarms and
	// to support the concentric circle cases.  支持同心圆
	
	// 这里对打包成批次的10个10个的圆做并行处理
	// inside parallel for we process the next "HOUGH_CIRCLES_ALT_BLOCK_SIZE" circles
	parallel_for_(Range(0, nstripes), [&](const Range& r)
	{
		CircleData cdata[HOUGH_CIRCLES_ALT_BLOCK_SIZE*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];
		CircleData arc[HOUGH_CIRCLES_ALT_BLOCK_SIZE];
		int prev_idx[HOUGH_CIRCLES_ALT_BLOCK_SIZE];

		std::vector local_circles;
		for (int j0 = r.start*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 < r.end*HOUGH_CIRCLES_ALT_BLOCK_SIZE; j0 += HOUGH_CIRCLES_ALT_BLOCK_SIZE)
		{
			const Vec4f* nzdata = &nz[0];
			const Point2f* cc = ¢ers[j0];
			int nc = std::min((int)(centers.size() - j0), (int)HOUGH_CIRCLES_ALT_BLOCK_SIZE);
			if (nc <= 0) break;

			// reset the statistics about the clusters
			for (int j = 0; j < nc; j++)
			{
				for (int k = 0; k < HOUGH_CIRCLES_ALT_BLOCK_SIZE; k++)
					cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS + k] = CircleData();
				arc[j] = CircleData();
				arc[j].weight = 1; // avoid division by zero
				prev_idx[j] = -2; // we compare the current index "i" with prev_idx[j]+1
								  // to check whether we are still at the current Canny
								  // connected component. so we initially set it to -2
								  // to make sure that the initial check gives "false".
			}

			for (int i = 0; i < nnz; i++)
			{
				Vec4f v = nzdata[i];
				float x = v[0], y = v[1], vx = v[2], vy = v[3], mag2 = vx*vx + vy*vy;
				bool stop_marker = x == 0.f && y == 0.f && vx == 0.f && vy == 0.f;

				for (int j = 0; j < nc; j++)
				{
					float cx = cc[j].x, cy = cc[j].y;
					float dx = x - cx, dy = y - cy;
					float rij2 = dx*dx + dy*dy;
					// check that i-th pixel is within the specified distance range from the center
					if ((rij2 > maxR2 || rij2 < minR2) && i < nnz - 1) continue;
					float dv = dx*vx + dy*vy;
					// check that the line segment connecting the edge pixel and the center and
					// the gradient at the edge pixel are almost collinear
					if ((double)dv*dv < (double)minCos2*mag2*rij2 && i < nnz - 1) continue;
					float rij = std::sqrt(rij2);

					CircleData& arc_j = arc[j];
					double r_arc = arc_j.rw / arc_j.weight;
					int di0 = 0;
					int prev = prev_idx[j];
					prev_idx[j] = i;

					// update the arc statistics if it still looks like an arc
					if (std::abs(rij - r_arc) < (r_arc + ARC_DELTA)*ARC_EPS && prev + 1 == i && !stop_marker)
					{
						arc_j.rw += rij;
						arc_j.weight++;
						di0 = 1;
						r_arc = arc_j.rw / arc_j.weight;
						if (i < nnz - 1)
							continue;
					}

					// otherwise (or in the very end) store the arc in the cluster collection,
					// if the arc is long enough.
					if (arc_j.weight >= MIN_COUNT && arc_j.weight >= r_arc*0.15)
					{
						// before doing it, compute the angular range coverage (the mask).
						uint64 mval = 0;
						for (int di = 0; di < arc_j.weight; di++)
						{
							int i1 = prev + di0 - di;
							Vec4f u = nz[i1];
							float x1 = u[0], y1 = u[1];
							float dx1 = x1 - cx, dy1 = y1 - cy;
							float af = fastAtan2(dy1, dx1)*(64.f / 360.f);
							int a = (cvFloor(af) & 63);
							int b = (a + 1) & 63;
							af -= a;
							// this is another protection from aliasing effects
							if (af <= 0.25f)
								mval |= (uint64)1 << a;
							else if (af > 0.75f)
								mval |= (uint64)1 << b;
							else
								mval |= ((uint64)1 << a) | ((uint64)1 << b);
						}

						double min_eps = DBL_MAX;
						int min_mval = (int)(sizeof(mval) * 8 + 1);
						int k = 0, best_k = -1, subst_k = -1;
						CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];

						for (; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++)
						{
							CircleData& cjk = cdata_j[k];
							if (cjk.weight == 0)
								break;  // it means that there is no more valid clusters
							double rk = cjk.rw / cjk.weight;
							// Compute and use the weighted "cluster with arc" area instead of
							// just cluster area or just arc area or their sum. This is because the cluster can
							// be small and the arc can be big, or vice versa. Weighted area is more robust.
							double r2avg = (rk*rk*cjk.weight + r_arc*r_arc*arc_j.weight) / (cjk.weight + arc_j.weight);
							// It seems to be more robust to compare circle areas (without "pi" scale)
							// instead of radiuses. When we compare radiuses, when depending on the ALPHA,
							// different big circles are merged too easily, or different small circles stay different.
							if (std::abs(rk*rk - r_arc*r_arc) < (r2avg + CIRCLE_AREA_OFFSET)*ARC2CLUSTER_EPS)
							{
								double eps = std::abs(rk - r_arc) / rk;
								if (eps < min_eps)
								{
									min_eps = eps;
									best_k = k;
								}
							}
							else
							{
								// Select the cluster with the worst angular coverage.
								// We use the angular coverage instead of the arc weight
								// in order to protect real small circles
								// from "fake" bigger circles with bigger "support".
								int pcnt = circle_popcnt(cjk.mask);
								if (pcnt < min_mval)
								{
									min_mval = pcnt;
									subst_k = k;
								}
							}
						}

						if (best_k >= 0) // if found the match, merge the arc into the cluster
						{
							CircleData& cjk = cdata_j[best_k];
							cjk.rw += arc_j.rw;
							cjk.weight += arc_j.weight;
							cjk.mask |= mval;
						}
						else
						{
							if (k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS)
								subst_k = k; // if we have empty space, just add the new cluster, do not throw anything
							CircleData& cjk0 = cdata_j[subst_k];

							// here was the code that attempts to merge the thrown-away cluster with others,
							// but apparently it does not have any noticeable effect,
							// so we removed it for the sake of simplicity ...

							// add the new cluster
							cjk0.rw = arc_j.rw;
							cjk0.weight = arc_j.weight;
							cjk0.mask = mval;
						}
					}
					// reset the arc statistics.
					arc_j.rw = stop_marker ? 0. : rij;
					arc_j.weight = 1;
					// do not clean arc_j.mval, because we do not alter it.
				}
			}

			// now merge the final clusters for each particular circle center (cx, cy)
			for (int j = 0; j < nc; j++)
			{
				CircleData* cdata_j = &cdata[j*HOUGH_CIRCLES_ALT_MAX_CLUSTERS];
				float cx = cc[j].x, cy = cc[j].y;

				for (int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++)
				{
					CircleData& cjk = cdata_j[k];
					if (cjk.weight == 0)
						continue;

					// Let in only more or less significant clusters.
					// Small clusters more likely correspond to a noise
					// (otherwise they would grew more substantial during the
					// cluster construction phase).
					// Processing those noisy clusters takes time and
					// potentially decreases accuracy of computed radiuses
					// of good clusters.
					double rjk = cjk.rw / cjk.weight;
					if (cjk.weight < rjk || circle_popcnt(cjk.mask) < 15)
						cjk.weight = 0;
				}

				// extensive O(nclusters^2) cluster merge algorithm, but since the number
				// of clusters is limited with a modest constant HOUGH_CIRCLES_ALT_MAX_CLUSTERS,
				// it's still O(1) algorithm :)
				for (int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++)
				{
					CircleData& cjk = cdata_j[k];
					if (cjk.weight == 0)
						continue;
					double rk = cjk.rw / cjk.weight;

					int l = k + 1;
					for (; l < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; l++)
					{
						CircleData& cjl = cdata_j[l];
						if (l == k || cjl.weight == 0)
							continue;
						double rl = cjl.rw / cjl.weight;
						// Here we use a simple sum of areas (without "pi" scale) instead of weighted
						// sum just for simplicity and potentially for better accuracy.
						if (std::abs(rk*rk - rl*rl) < (rk*rk + rl*rl + CIRCLE_AREA_OFFSET)*CLUSTER_MERGE_EPS)
						{
							cjk.rw += cjl.rw;
							cjk.weight += cjl.weight;
							cjk.mask |= cjl.mask;
							rk = cjk.rw / cjk.weight;
							cjl.weight = 0;
							l = -1; // try to merge other clusters again with the updated k-th cluster
						}
					}
				}

				for (int k = 0; k < HOUGH_CIRCLES_ALT_MAX_CLUSTERS; k++)
				{
					CircleData& cjk = cdata_j[k];
					if (cjk.weight == 0)
						continue;
					double rk = cjk.rw / cjk.weight;
					uint64 mask_jk = cjk.mask, mask_jk0 = (mask_jk + 1) ^ mask_jk;
					int count = 0, count0 = -1, runlen = 0, max_runlen = 0;
					int prev_bit = 0;
					for (int b = 0; b < 64; b++, mask_jk >>= 1, mask_jk0 >>= 1)
					{
						int bit_k = (mask_jk & 1) != 0;
						count += bit_k;
						count0 += (mask_jk0 & 1) != 0;
						if (bit_k == prev_bit) { runlen++; continue; }
						if (prev_bit == 1)
							max_runlen = std::max(max_runlen, runlen);
						runlen = 1;
						prev_bit = bit_k;
					}
					if (prev_bit == 1)
						max_runlen = std::max(max_runlen, runlen + (count < 64 ? count0 : 0));

					// Those constants are the results of fine-tuning.
					// Basically, by lowering thresholds more real circles, as well as fake circles, are accepted.
					// By raising the thresholds you get less real circles and less false alarms.
					// A better and more safe way to obtain better detection results is to regulate
					// [minRadius, maxRadius] range and to play with minCos2 parameter.
					// May be some classifier can be trained that takes the weight,
					// circle radius and the bit mask as inputs and produces the verdict.
					bool accepted = (cjk.weight >= rk * 3 && count >= 35 && max_runlen >= 20) || count >= 55;
					//if(debug)
					//printf("[%c]. cx=%.1f, cy=%.1f, r=%.1f, weight=%d, count=%d, max_runlen=%d, mask=%016llx\n",
					//       (accepted ? '+' : '-'), cx, cy, rk, cjk.weight, count, max_runlen, cjk.mask);

					if (accepted)
						local_circles.push_back(EstimatedCircle(Vec3f(cx, cy, (float)rk), cjk.weight));
				}
			}
		}
		if (!local_circles.empty()) //如果local_circles非空就在circles后面加入local_circles
		{
			cmutex.lock();
			std::copy(local_circles.begin(), local_circles.end(), std::back_inserter(circles));
			cmutex.unlock();
		}
	});

	// 这里把并行操作得到的一堆圆做个排序还有改一下值,但是这些圆其实就已经是最后输出的圆了没有做增删
	// 计算复杂度O(n^2)
	// The final circle merge procedure.
	// This is O(ncircles^2) algorithm
	// and it can take a long time in some specific scenarious.
	// But most of the time it's very fast.
	size_t i0 = 0, nc = circles.size();
	for (size_t i = 0; i < nc; i++)
	{
		if (circles[i].accum == 0) continue;
		EstimatedCircle& ci = circles[i0] = circles[i];
		for (size_t j = i + 1; j < nc; j++)
		{
			EstimatedCircle cj = circles[j];
			if (cj.accum == 0) continue;
			float dx = ci.c[0] - cj.c[0], dy = ci.c[1] - cj.c[1];
			float r2 = dx*dx + dy*dy;
			float rs = ci.c[2] + cj.c[2];
			if (r2 > rs*rs*FINAL_MERGE_DIST_EPS)
				continue;
			if (std::abs(ci.c[2] * ci.c[2] - cj.c[2] * cj.c[2]) <
				(ci.c[2] * ci.c[2] + cj.c[2] * cj.c[2] + CIRCLE_AREA_OFFSET)*FINAL_MERGE_AREA_EPS)
			{
				int wi = ci.accum, wj = cj.accum;
				if (wi < wj) std::swap(ci, cj);
				circles[j].accum = 0;
			}
		}
		i0++;
	}
	circles.resize(i0);
}

 

你可能感兴趣的:(C++,opencv,c++,opencv)