目录
数据预处理
读取数据
处理缺失值
转换为张量格式
小结
在使用深度学习时,我们经常从预处理原始数据开始, 而不是从那些准备好的张量格式数据开始。 在python中常用的数据分析工具中,我们通常使用pandas、numpy等。本节将会介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
要从创建的CSV文件中加载原始数据集,我们导入pandas包并调用read_csv函数。该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。
import pandas as pd
data = pd.read_csv(data_file)
print(data)
输出:
NumRooms Alley Price
0 NaN Pave 127500
1 2.0 NaN 106000
2 4.0 NaN 178100
3 NaN NaN 140000
注意,“NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑插值法。
通过位置索引iloc,我们将data分成inputs和outputs, 其中前者为data的前两列,而后者为data
的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)
输出:
NumRooms Alley
0 3.0 Pave
1 2.0 NaN
2 4.0 NaN
3 3.0 NaN
对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。 由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。 巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。 缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
输出:
NumRooms Alley_Pave Alley_nan
0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
X, y
输出:
(tensor([[3., 1., 0.],
[2., 0., 1.],
[4., 0., 1.],
[3., 0., 1.]], dtype=torch.float64),
tensor([127500, 106000, 178100, 140000]))
pandas软件包是Python中常用的数据分析工具中,pandas可以与张量兼容。
用pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。