OpenCV实现人脸对齐

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

一、人脸对齐介绍

在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一般都是通过对人脸进行分割,然后通过角点检测来寻找眼睛两个角点,连线之后根据它们有水平线的角度,旋转实现人脸对齐之后在提取人脸区域,OpenCV3.x版本开始支持获取Landmark数据,最常见的Landmark数据就是人脸的68个标准点位,图示如下:

OpenCV实现人脸对齐_第1张图片

实现对齐主要是基于眼睛的位置,对人脸倾斜进行几何变换,实现人脸对齐操作,人脸对齐对提高人脸识别率特别重要,常见的人脸识别系统都会包含人脸对齐操作,举例如下:

OpenCV实现人脸对齐_第2张图片

二、人脸对齐代码实现

基于OpenCV实现人脸对齐主要分为如下几步

1.人脸检测器定义与Landmark检测

OpenCV中通过HAAR或者LBP特征实现了人脸检测,最新的OpenCV3.4基于残差网络也实现了人脸检测,相关的文章可以阅读: 

OpenCV基于残差网络实现人脸检测

详解LBP特征与应用(人脸识别)

 有了人脸之后,我们就可以通过加载预训练的Landmark检测模型,实现Landmark检测,这里使用的模型是局部二值特征(LBF-Local Binary Feature)实现人脸68个点位的检测,这个也是2014年CVPR的一篇论文。最新的OpenCV3.4 Landmark检测器支持自定义人脸检测器设置,所以只要把我们上面的HAAR/LBP/残差人脸检测器设置过去就会自动检测人脸,然后发现Landmark数据。整个代码实现如下:

// 创建LBF landmark 检测器
Ptr facemark = FacemarkLBF::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
// 加载模型数据
facemark->loadModel("D:/vcprojects/images/lbfmodel.yaml");
cout << "Loaded model" << endl;
// 开始检测
printf("start to detect landmarks...\n");
vector faces;
facemark->getFaces(img, faces);
vector< vector > shapes;
if (facemark->fit(img, faces, shapes))
{
    Point eye_left; // 36th
    Point eye_right; // 45th
    for (unsigned long i = 0; i

2.Landmark数据处理

对Landmark数据提取获得眼睛位置坐标,这里我们获取的是36与45两个点坐标计算角度(参照第一张图),然后通过几何变换实现人脸对齐操作。代码如下:

int offsetx = roi.x;
int offsety = roi.y;
// 计算中心位置
int cx = roi.width / 2;
int cy = roi.height / 2;
// 计算角度
int dx = right.x - left.x;
int dy = right.y - left.y;
double degree = 180 * ((atan2(dy, dx)) / CV_PI);
// 旋转矩阵计算
Mat M = getRotationMatrix2D(Point2f(cx, cy), degree, 1.0);
Point2f center(cx, cy);
Rect bbox = RotatedRect(center, face.size(), degree).boundingRect();
M.at(0, 2) += (bbox.width / 2.0 - center.x);
M.at(1, 2) += (bbox.height / 2.0 - center.y);
// 对齐
Mat result;
warpAffine(face, result, M, bbox.size());
imshow("face-alignment", result);

3.运行效果

OpenCV实现人脸对齐_第3张图片

完整的程序代码如下:

#include 
#include 
#include 
#include 
using namespace cv;
using namespace cv::face;
using namespace std;
const String  lbpfilePath = "D:/opencv-3.4/opencv/build/etc/lbpcascades/lbpcascade_frontalface.xml";
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade);
void face_alignment(Mat &face, Point left, Point right, Rect roi);
int main(int argc, char** argv) {
    Mat img = imread("D:/vcprojects/images/gaoyy.png");
    namedWindow("input", CV_WINDOW_AUTOSIZE);
    imshow("input", img);
    CascadeClassifier face_cascade;
    face_cascade.load(lbpfilePath);
    FacemarkLBF::Params params;
    params.n_landmarks = 68; // 68个标注点
    params.initShape_n = 10;
    params.stages_n = 5; // 算法的5个强化步骤
    params.tree_n = 6; // 模型中每个标注点结构树 数目
    params.tree_depth = 5; // 决策树深度
    // 创建LBF landmark 检测器
    Ptr facemark = FacemarkLBF::create(params);
    facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
    // 加载模型数据
    facemark->loadModel("D:/vcprojects/images/lbfmodel.yaml");
    cout << "Loaded model" << endl;
    // 开始检测
    printf("start to detect landmarks...\n");
    vector faces;
    facemark->getFaces(img, faces);
    vector< vector > shapes;
    if (facemark->fit(img, faces, shapes))
    {
        Point eye_left; // 36th
        Point eye_right; // 45th
        for (unsigned long i = 0; i 1)
        cvtColor(image, gray, COLOR_BGR2GRAY);
    else
        gray = image.getMat().clone();
    equalizeHist(gray, gray);
    std::vector faces_;
    face_cascade->detectMultiScale(gray, faces_, 1.1, 1, CASCADE_SCALE_IMAGE, Size(50, 50));
    Mat(faces_).copyTo(faces);
    return true;
}
void face_alignment(Mat &face, Point left, Point right, Rect roi) {
    int offsetx = roi.x;
    int offsety = roi.y;
    // 计算中心位置
    int cx = roi.width / 2;
    int cy = roi.height / 2;
    // 计算角度
    int dx = right.x - left.x;
    int dy = right.y - left.y;
    double degree = 180 * ((atan2(dy, dx)) / CV_PI);
    // 旋转矩阵计算
    Mat M = getRotationMatrix2D(Point2f(cx, cy), degree, 1.0);
    Point2f center(cx, cy);
    Rect bbox = RotatedRect(center, face.size(), degree).boundingRect();
    M.at(0, 2) += (bbox.width / 2.0 - center.x);
    M.at(1, 2) += (bbox.height / 2.0 - center.y);
    // 对齐
    Mat result;
    warpAffine(face, result, M, bbox.size());
    imshow("face-alignment", result);
}

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

OpenCV实现人脸对齐_第4张图片

OpenCV实现人脸对齐_第5张图片

你可能感兴趣的:(人脸识别,人工智能,计算机视觉,python,opencv)