插件使用的解决方案如下:
容器间通信:同一个pod内的多个容器间的通信,通过lo回环网络接口即可实现;
pod之间的通信:
同一节点的pod之间通过cni网桥转发数据包。
不同节点的pod之间的通信需要网络插件支持。
pod和service通信: 通过iptables或ipvs实现通信,ipvs取代不了iptables,因为ipvs只能做负载均衡,而做不了nat转换。
pod和外网通信: iptables的MASQUERADE。
**Service与集群外部客户端的通信:**ingress、nodeport、loadbalancer
service官方文档
开启kube-proxy的ipvs模式:
yum install -y ipvsadm
kubectl edit cm kube-proxy -n kube-system
mode: "ipvs"
kubectl get pod -n kube-system |grep kube-proxy | awk '{system("kubectl delete pod "$1" -n kube-system")}'
vim demo.yml
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
selector:
app: myapp
ports:
- protocol: TCP
port: 80
targetPort: 80
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo2
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
containers:
- name: myapp
image: myapp:v2
域名格式:$(servicename).$(namespace).svc.cluster.local
vim demo.yml
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
selector:
app: myapp
ports:
- protocol: TCP
port: 80
targetPort: 80
clusterIP: None
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo2
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
containers:
- name: myapp
image: myapp:v2
dig myservice.default.svc.cluster.local. @10.244.0.10
vim demo.yml
- replicas: 6
dig myservice.default.svc.cluster.local. @10.244.0.10
集群内部访问
。 这也是默认的 ServiceType。集群外部
访问一个 NodePort 服务。vim demo.yml
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
selector:
app: myapp
ports:
- protocol: TCP
port: 80
targetPort: 80
type: NodePort
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo2
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
containers:
- name: myapp
image: myapp:v2
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
selector:
app: myapp
ports:
- protocol: TCP
port: 80
targetPort: 80
#type: NodePort
type: LoadBalancer
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo2
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
containers:
- name: myapp
image: myapp:v2
vim demo.yml
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
selector:
app: myapp
ports:
- protocol: TCP
port: 80
targetPort: 80
#type: NodePort
#type: LoadBalancer
externalIPs:
- 172.25.2.100
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: demo2
spec:
replicas: 3
selector:
matchLabels:
app: myapp
template:
metadata:
labels:
app: myapp
spec:
containers:
- name: myapp
image: myapp:v2
vim exsvc.yml
apiVersion: v1
kind: Service
metadata:
name: exsvc
spec:
type: ExternalName
externalName: www.westos.org
k8s通过CNI接口接入其他插件来实现网络通讯。目前比较流行的插件有flannel,calico等。
CNI插件存放位置:# cat /etc/cni/net.d/10-flannel.conflist
插件使用的解决方案如下:
flannel支持多种后端:
Vxlan
vxlan:报文封装,默认
Directrouting:直接路由,跨网段使用vxlan,同网段使用host-gw模式。
host-gw
主机网关,性能好,但只能在二层网络中,不支持跨网络,如果有成千上万的Pod,容易产生广播风暴,不推荐
UDP
性能差,不推荐
Flannel vxlan模式跨主机通信原理
当容器发送IP包,通过veth pair 发往cni网桥,再路由到本机的flannel.1设备进行处理。
VTEP设备之间通过二层数据帧进行通信,源VTEP设备收到原始IP包后,在上面加上一个目的MAC地址,封装成一个内部数据帧,发送给目的VTEP设备。
(每个节点缓存所有节点的的flannel的MAC地址,通过ip n 可以查看)
内部数据桢,并不能在宿主机的二层网络传输,Linux内核还需要把它进一步封装成为宿主机的一个普通的数据帧,承载着内部数据帧通过宿主机的eth0进行传输。
Linux会在内部数据帧前面,加上一个VXLAN头,VXLAN头里有一个重要的标志叫VNI,它是VTEP识别某个数据桢是不是应该归自己处理的重要标识。
flannel.1设备只知道另一端flannel.1设备的MAC地址,却不知道对应的宿主机地址是什么。在linux内核里面,网络设备进行转发的依据,来自FDB的转发数据库,这个flannel.1网桥对应的FDB信息,是由flanneld进程维护的。
此时flannel.1设备就可以把这个数据帧从eth0发出去,再经过宿主机网络来到目标节点的eth0设备。目标主机内核网络栈会发现这个数据帧有VXLAN Header,并且VNI为1,Linux内核会对它进行拆包,拿到内部数据帧,根据VNI的值,交给本机flannel.1设备处理,flannel.1拆包,根据路由表发往cni网桥,最后到达目标容器。
测试
主机网关,性能好,但只能在二层网络中,不支持跨网络,如果有成千上万的Pod,容易产生广播风暴,不推荐
kubectl -n kube-system edit cm kube-flannel-cfg
修改模式"Type": "host-gw"
kubectl get pod -n kube-system | grep flannel | awk '{system("kubectl delete pod "$1" -n kube-system")}'
更新直接路由,跨网段使用vxlan,同网段使用host-gw模式。