**在kubernetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,**但是pod的ip地址不是固定的,这也就意味着不方便直接采用pod的ip对服务进行访问。
为了解决这个问题,kubernetes提供了Service资源,Service会对提供同一个服务的多个pod进行聚合,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。
Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程
,每个Node节点上都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,
而kube-proxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则。
# 10.97.97.97:80 是service提供的访问入口
# 当访问这个入口的时候,可以发现后面有三个pod的服务在等待调用,
# kube-proxy会基于rr(轮询)的策略,将请求分发到其中一个pod上去
# 这个规则会同时在集群内的所有节点上都生成,所以在任何一个节点上访问都可以。
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被Iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。 该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kube-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。
iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。 该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的LB策略,当后端Pod不可用时也无法进行重试。
ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此以外,ipvs支持更多的LB算法。
# 此模式必须安装ipvs内核模块,否则会降级为iptables
# 开启ipvs
[root@k8s-master01 ~]# kubectl edit cm kube-proxy -n kube-system
# 修改mode: "ipvs"
[root@k8s-master01 ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
[root@node1 ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
Service的资源清单文件:
kind: Service # 资源类型
apiVersion: v1 # 资源版本
metadata: # 元数据
name: service # 资源名称
namespace: dev # 命名空间
spec: # 描述
selector: # 标签选择器,用于确定当前service代理哪些pod
app: nginx
type: # Service类型,指定service的访问方式
clusterIP: # 虚拟服务的ip地址
sessionAffinity: # session亲和性,支持ClientIP、None两个选项
ports: # 端口信息
- protocol: TCP
port: 3017 # service端口
targetPort: 5003 # pod端口
nodePort: 31122 # 主机端口
- ClusterIP:默认值,它是Kubernetes系统自动分配的虚拟IP,只能在集群内部访问
实验环境准备
在使用service之前,首先利用Deployment创建出3个pod,注意要为pod设置app=nginx-pod的标签
创建deployment.yaml,内容如下:
apiVersion: apps/v1
kind: Deployment
metadata:
name: pc-deployment
namespace: dev
spec:
replicas: 3
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
[root@k8s-master01 ~]# kubectl create -f deployment.yaml
deployment.apps/pc-deployment created
# 查看pod详情
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide --show-labels
NAME READY STATUS IP NODE LABELS
pc-deployment-66cb59b984-8p84h 1/1 Running 10.244.1.39 node1 app=nginx-pod
pc-deployment-66cb59b984-vx8vx 1/1 Running 10.244.2.33 node2 app=nginx-pod
pc-deployment-66cb59b984-wnncx 1/1 Running 10.244.1.40 node1 app=nginx-pod
# 为了方便后面的测试,修改下三台nginx的index.html页面(三台修改的IP地址不一致)
# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
# echo "10.244.1.39" > /usr/share/nginx/html/index.html
#修改完毕之后,访问测试
[root@k8s-master01 ~]# curl 10.244.1.39
10.244.1.39
[root@k8s-master01 ~]# curl 10.244.2.33
10.244.2.33
[root@k8s-master01 ~]# curl 10.244.1.40
10.244.1.40
创建service-clusterip.yaml文件
apiVersion: v1
kind: Service
metadata:
name: service-clusterip
namespace: dev
spec:
selector:
app: nginx-pod
clusterIP: 10.97.97.97 # service的ip地址,如果不写,默认会生成一个
type: ClusterIP
ports:
- port: 80 # Service端口
targetPort: 80 # pod端口
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service-clusterip ClusterIP 10.97.97.97 <none> 80/TCP 13s app=nginx-pod
# 查看service的详细信息
# 在这里有一个Endpoints列表,里面就是当前service可以负载到的服务入口
[root@k8s-master01 ~]# kubectl describe svc service-clusterip -n dev
Name: service-clusterip
Namespace: dev
Labels: <none>
Annotations: <none>
Selector: app=nginx-pod
Type: ClusterIP
IP: 10.97.97.97
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity: None
Events: <none>
# 查看ipvs的映射规则
[root@k8s-master01 ~]# ipvsadm -Ln
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
# 访问10.97.97.97:80观察效果
[root@k8s-master01 ~]# curl 10.97.97.97:80
10.244.2.33
Endpoint
Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。
一个Service由一组Pod组成,这些Pod通过Endpoints暴露出来,**Endpoints是实现实际服务的端点集合。**换句话说,service和pod之间的联系是通过endpoints实现的。
负载分发策略
对Service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略:
如果不定义,默认使用kube-proxy的策略,比如随机、轮询
基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个Pod上
此模式可以使在spec中添加sessionAffinity:ClientIP
选项
# 查看ipvs的映射规则【rr 轮询】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP 10.97.97.97:80 rr
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97:80; sleep 5; done;
10.244.1.40
10.244.1.39
10.244.2.33
10.244.1.40
10.244.1.39
10.244.2.33
# 修改分发策略----sessionAffinity:ClientIP
# 查看ipvs规则【persistent 代表持久】
[root@k8s-master01 ~]# ipvsadm -Ln
TCP 10.97.97.97:80 rr persistent 10800
-> 10.244.1.39:80 Masq 1 0 0
-> 10.244.1.40:80 Masq 1 0 0
-> 10.244.2.33:80 Masq 1 0 0
# 循环访问测试
[root@k8s-master01 ~]# while true;do curl 10.97.97.97; sleep 5; done;
10.244.2.33
10.244.2.33
10.244.2.33
# 删除service
[root@k8s-master01 ~]# kubectl delete -f service-clusterip.yaml
service "service-clusterip" deleted
在某些场景中,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种情况,kubernetes提供了HeadLiness Service,这类Service不会分配Cluster IP,如果想要访问service,只能通过service的域名进行查询。
创建service-headliness.yaml
apiVersion: v1
kind: Service
metadata:
name: service-headliness
namespace: dev
spec:
selector:
app: nginx-pod
clusterIP: None # 将clusterIP设置为None,即可创建headliness Service
type: ClusterIP
ports:
- port: 80
targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-headliness.yaml
service/service-headliness created
# 获取service, 发现CLUSTER-IP未分配
[root@k8s-master01 ~]# kubectl get svc service-headliness -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service-headliness ClusterIP None <none> 80/TCP 11s app=nginx-pod
# 查看service详情
[root@k8s-master01 ~]# kubectl describe svc service-headliness -n dev
Name: service-headliness
Namespace: dev
Labels: <none>
Annotations: <none>
Selector: app=nginx-pod
Type: ClusterIP
IP: None
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.39:80,10.244.1.40:80,10.244.2.33:80
Session Affinity: None
Events: <none>
# 查看域名的解析情况
[root@k8s-master01 ~]# kubectl exec -it pc-deployment-66cb59b984-8p84h -n dev /bin/sh
/ # cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local
[root@k8s-master01 ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.40
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.39
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.33
在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用到另外一种类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。
创建service-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: service-nodeport
namespace: dev
spec:
selector:
app: nginx-pod
type: NodePort # service类型
ports:
- port: 80
nodePort: 30002 # 指定绑定的node的端口(默认的取值范围是:30000-32767), 如果不指定,会默认分配
targetPort: 80
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-nodeport.yaml
service/service-nodeport created
# 查看service
[root@k8s-master01 ~]# kubectl get svc -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) SELECTOR
service-nodeport NodePort 10.105.64.191 <none> 80:30002/TCP app=nginx-pod
# 接下来可以通过电脑主机的浏览器去访问集群中任意一个nodeip的30002端口,即可访问到pod
**LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一个负载均衡设备,**而这个设备需要外部环境支持的,外部服务发送到这个设备上的请求,会被设备负载之后转发到集群中。
ExternalName类型的Service用于引入集群外部的服务,它通过externalName
属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。
apiVersion: v1
kind: Service
metadata:
name: service-externalname
namespace: dev
spec:
type: ExternalName # service类型
externalName: www.baidu.com #改成ip地址也可以
# 创建service
[root@k8s-master01 ~]# kubectl create -f service-externalname.yaml
service/service-externalname created
# 域名解析
[root@k8s-master01 ~]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com. 30 IN CNAME www.a.shifen.com.
www.a.shifen.com. 30 IN A 39.156.66.18
www.a.shifen.com. 30 IN A 39.156.66.14
在前面课程中已经提到,Service对集群之外暴露服务的主要方式有两种:NotePort和LoadBalancer,但是这两种方式,都有一定的缺点:
基于这种现状,kubernetes提供了Ingress资源对象,Ingress只需要一个NodePort或者一个LB就可以满足暴露多个Service的需求。工作机制大致如下图表示:
实际上,Ingress相当于一个7层的负载均衡器,是kubernetes对反向代理的一个抽象,它的工作原理类似于Nginx,可以理解成在Ingress里建立诸多映射规则,Ingress Controller通过监听这些配置规则并转化成Nginx的反向代理配置 , 然后对外部提供服务。
在这里有两个核心概念:
Ingress(以Nginx为例)的工作原理如下:
环境准备
搭建ingress环境
//首先删除内部资源
[root@master ~]# kubectl get pod -n lty
NAME READY STATUS RESTARTS AGE
nginx-ff6774dc6-75zwf 1/1 Running 0 7d6h
pod1 1/1 Running 0 16d
[root@master ~]# kubectl delete pod nginx-ff6774dc6-75zwf -n lty
pod "nginx-ff6774dc6-75zwf" deleted
# 创建文件夹
[root@k8s-master01 ~]# mkdir ingress-controller
[root@k8s-master01 ~]# cd ingress-controller/
[root@master ingress-controller]# wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/baremetal/deploy.yaml
//将其改为hithub上的访问资源,以下可以在hub-docker上搜索到
[root@master ingress-controller]# vim deploy.yaml
image: dyrnq/ingress-nginx-controller:v1.5.1
image: lianyuxue1020/kube-webhook-certgen:v1.1.1
image: lianyuxue1020/kube-webhook-certgen:v1.1.1
//应用
[root@master ingress-controller]# kubectl apply -f deploy.yaml
[root@master ingress-controller]# kubectl get svc -n ingress-nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ingress-nginx NodePort 10.108.171.184 <none> 80:30197/TCP,443:31540/TCP 90m
ingress-nginx-controller NodePort 10.107.46.245 <none> 80:31382/TCP,443:30983/TCP 2m32s
ingress-nginx-controller-admission ClusterIP 10.102.181.247 <none> 443/TCP 2m32s
//查看其运行
[root@master ~]# kubectl get pods -n ingress-nginx
NAME READY STATUS RESTARTS AGE
ingress-nginx-admission-create-mccct 0/1 Completed 0 10h
ingress-nginx-admission-patch-cq8sn 0/1 Completed 2 10h
ingress-nginx-controller-6f66fd4bdb-t8nbk 1/1 Running 0 10h
[root@master ~]# kubectl describe pod ingress-nginx-controller-6f66fd4bdb-t8nbk -n ingress-nginx
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Pulled 10h kubelet Successfully pulled image "dyrnq/ingress-nginx-controller:v1.5.1" in 1m56.67311266s
Normal Created 10h kubelet Created container controller
Normal Started 10h kubelet Started container controller
Normal RELOAD 10h nginx-ingress-controller NGINX reload triggered due to a change in configuration
准备service和pod
为了后面的实验比较方便,创建如下图所示的模型
创建tomcat-nginx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
namespace: lty
spec:
replicas: 3
selector:
matchLabels:
app: nginx-pod
template:
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: tomcat-deployment
namespace: lty
spec:
replicas: 3
selector:
matchLabels:
app: tomcat-pod
template:
metadata:
labels:
app: tomcat-pod
spec:
containers:
- name: tomcat
image: tomcat:8.5-jre10-slim
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: nginx-service
namespace: lty
spec:
selector:
app: nginx-pod
clusterIP: None
type: ClusterIP
ports:
- port: 80
targetPort: 80
---
apiVersion: v1
kind: Service
metadata:
name: tomcat-service
namespace: lty
spec:
selector:
app: tomcat-pod
clusterIP: None
type: ClusterIP
ports:
- port: 8080
targetPort: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f tomcat-nginx.yaml
# 查看
[root@k8s-master01 ~]# kubectl get svc -n lty
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-service ClusterIP None <none> 80/TCP 48s
tomcat-service ClusterIP None <none> 8080/TCP 48s
创建ingress-http.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ingress-http
namespace: lty
spec:
ingressClassName: nginx
rules:
- host: nginx.itwangqing.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx-service
port:
number: 80
- host: tomcat.itwangqing.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: tomcat-service
port:
number: 8080
# 创建
[root@master ingress-controller]# kubectl create -f ingress-http.yaml
ingress.networking.k8s.io/ingress-http created
# 查看
[root@master ingress-controller]# kubectl get -f ingress-http.yaml
NAME CLASS HOSTS ADDRESS PORTS AGE
ingress-http nginx nginx.hhh.com,tomcat.lll.com 192.168.47.20 80 112s
# 查看详情
[root@master ingress-controller]# kubectl describe ing ingress-http -n lty
nginx.hhh.com
/ nginx-service:80 (10.244.1.10:80,10.244.1.6:80,10.244.1.9:80)
tomcat.lll.com
/ tomcat-service:8080 (10.244.1.11:8080,10.244.1.7:8080,10.244.1.8:8080)
//查看容器状态
[root@master ingress-controller]# kubectl get pod -n lty -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-deployment-66d5c85c96-8xr89 1/1 Running 0 20m 10.244.1.6 node1 <none> <none>
nginx-deployment-66d5c85c96-h842v 1/1 Running 0 20m 10.244.1.9 node1 <none> <none>
nginx-deployment-66d5c85c96-qrndp 1/1 Running 0 14m 10.244.1.10 node1 <none> <none>
tomcat-deployment-75888dc5d8-9bnpg 1/1 Running 0 14m 10.244.1.11 node1 <none> <none>
tomcat-deployment-75888dc5d8-qgf76 1/1 Running 0 20m 10.244.1.8 node1 <none> <none>
tomcat-deployment-75888dc5d8-xjhsd 1/1 Running 0 20m 10.244.1.7 node1 <none> <none>
# 接下来,在本地电脑上"C:\Windows\System32\drivers\etc\配置hosts文件,解析上面的两个域名到192.168.47.137(master)上
192.168.47.137 nginx.hhh.com
192.168.47.137 tomcat.lll.com
//查看印射的端口信息
[root@master ingress-controller]# kubectl get svc -n ingress-nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ingress-nginx-controller NodePort 10.108.171.184 <none> 80:30197/TCP,443:31540/TCP 41m
ingress-nginx-controller-admission ClusterIP 10.108.76.211 <none> 443/TCP 41m
# 然后,就可以分别访问查看效果了
创建证书
//首先将http删除以免重复
[root@master ingress-controller]# kubectl delete -f ingress-http.yaml
[root@master ingress-controller]# mv ingress-http.yaml ingress-https.yaml
# 生成证书
openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/C=CN/ST=BJ/L=BJ/O=nginx/CN=itwangqing.com"
# 创建密钥
kubectl create secret tls tls-secret --key tls.key --cert tls.crt
创建ingress-https.yaml
[root@master ingress-controller]# cat ingress-https.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: ingress-https
namespace: lty
spec:
tls:
- hosts:
- nginx.hhh.com
- tomcat.lll.com
secretName: tls-secret
ingressClassName: nginx
rules:
- host: nginx.hhh.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: nginx-service
port:
number: 80
- host: tomcat.lll.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: tomcat-service
port:
number: 8080
# 创建
[root@k8s-master01 ~]# kubectl create -f ingress-https.yaml
ingress.extensions/ingress-https created
# 查看
[root@k8s-master01 ~]# kubectl get ing ingress-https -n dev
NAME HOSTS ADDRESS PORTS AGE
ingress-https nginx.itwangqing.com,tomcat.itwangqing.com 10.104.184.38 80, 443 2m42s
# 查看详情
[root@k8s-master01 ~]# kubectl describe ing ingress-https -n dev
...
TLS:
tls-secret terminates nginx.itwangqing.com,tomcat.itwangqing.com
Rules:
Host Path Backends
---- ---- --------
nginx.itwangqing.com / nginx-service:80 (10.244.1.97:80,10.244.1.98:80,10.244.2.119:80)
tomcat.itwangqing.com / tomcat-service:8080(10.244.1.99:8080,10.244.2.117:8080,10.244.2.120:8080)
//查看https的端口协议是多少
[root@master ingress-controller]# kubectl get svc -n ingress-nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ingress-nginx-controller NodePort 10.108.171.184 <none> 80:30197/TCP,443:31540/TCP 61m
ingress-nginx-controller-admission ClusterIP 10.108.76.211 <none> 443/TCP 61m
# 下面可以通过浏览器访问https://nginx.it.com:31335 和 https://tomcat.it.com:31335来查看了