通过本篇文章,你将学会:
学习的前提是你已经知道在构建好的堆中调整单个元素的原理,也就是下沉(down)操作和上浮(up)操作。
在"container/heap"
标准库中有实现堆的Init,Pop,Push,Fix等方法,只需要向heap的Init,Pop,Push,Fix等方法中传入实现了Interface
的结构类型就可以使用heap的方法来初始化和调整堆
heap.Interface类型如下
type Interface interface {
sort.Interface
Push(x any) // add x as element Len()
Pop() any // remove and return element Len() - 1.
}
sort.Interface类型如下
type Interface interface {
Len() int
Less(i, j int) bool
Swap(i, j int)
}
所以我们的自定义类型需要实现上面五个方法
type IntHeap []int
func (h IntHeap) Len() int { return len(h) }
func (h IntHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h IntHeap) Less(i, j int) bool { return h[i] > h[j] } // 大顶堆
//func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] } // 小顶堆
func (h *IntHeap) Push(x interface{}) {
*h = append(*h, x.(int))
}
func (h *IntHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
我们一个一个来解释type IntHeap []int
表明我们底层使用数组来存储堆元素
len()
返回IntHeap
的长度
Swap(i, j int)
交换IntHeap
中下标为i和j的元素
Less(i, j int)
如果下标i的元素“小于”下标j的元素,则返回true,否则返回false。返回true则表明i不会在j的下方。通过控制Less
函数的返回可以实现大顶堆或者小顶堆
Push(x any)
函数往IntHeap
的末尾插入元素
Pop()
函数取出IntHeap
末尾的元素
Pop
之所以这样实现,是因为在heap包的源码中,Pop
在调用IntHeap
的Pop
之前进行了一些操作:
heap.Push
函数会往堆尾插入元素,如何对这个元素进行上浮(up)操作
heap.Pop
函数会先交换堆首和堆尾元素,然后再对堆首元素进行下沉(down)操作,所以我们的IntHeap类型是往堆尾插入的。
// Push pushes the element x onto the heap.
// The complexity is O(log n) where n = h.Len().
func Push(h Interface, x any) {
h.Push(x)
up(h, h.Len()-1)
}
// Pop removes and returns the minimum element (according to Less) from the heap.
// The complexity is O(log n) where n = h.Len().
// Pop is equivalent to Remove(h, 0).
func Pop(h Interface) any {
n := h.Len() - 1
h.Swap(0, n)
down(h, 0, n)
return h.Pop()
}
up
和down
代码如下
func up(h Interface, j int) {
for {
i := (j - 1) / 2 // parent
if i == j || !h.Less(j, i) {
break
}
h.Swap(i, j)
j = i
}
}
func down(h Interface, i0, n int) bool {
i := i0
for {
j1 := 2*i + 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
j = j2 // = 2*i + 2 // right child
}
if !h.Less(j, i) {
break
}
h.Swap(i, j)
i = j
}
return i > i0
}
package main
import (
"container/heap"
"fmt"
)
type IntHeap []int
func (h IntHeap) Len() int { return len(h) }
func (h IntHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h IntHeap) Less(i, j int) bool { return h[i] > h[j] } // 大顶堆
//func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] } // 小顶堆
func (h *IntHeap) Push(x interface{}) {
*h = append(*h, x.(int))
}
func (h *IntHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func main() {
h := &IntHeap{6, 1, 5, 3, 8, 7, 2}
heap.Init(h)
heap.Push(h, 4)
for h.Len() > 0 {
fmt.Printf("%d ", heap.Pop(h))
}
}
输出:
8 7 6 5 4 3 2 1
只要实现了下沉操作,就可以通过对非叶子节点进行下沉来初始化堆,通过将堆首元素弹出并置于堆尾即可实现堆排序
func HeapSort(values []int) {
n := len(values)
for i := n/2 - 1; i >= 0; i-- {
down(values, n, i)
}
for i := n - 1; i >= 0; i-- {
values[i], values[0] = values[0], values[i]
down(values, i, 0)
}
}
func down(values []int, n, i int) {
largest := i
l := 2*i + 1
r := 2*i + 2
if l < n && values[l] > values[largest] {
largest = l
}
if r < n && values[r] > values[largest] {
largest = r
}
if largest != i {
values[i], values[largest] = values[largest], values[i]
down(values, n, largest)
}
}
也可以使用heap包来实现
func HeapSort2(values []int) {
h := IntHeap(values)
heap.Init(&h)
n := h.Len()
for i := 0; i < n; i++ {
heap.Pop(&h)
}
}
测试HeapSort2
func main() {
var nums = []int{6, 1, 5, 3, 8, 7, 2, 4}
HeapSort2(nums)
fmt.Println(nums)
}
输出:
[1 2 3 4 5 6 7 8]
通过这篇文章,可以学会如何使用heap包来构建和操作堆,并可以实现堆排序等应用。