先引入库(事实上是在构建时引入的)note9_train.py
import torchvision
from torch.utils.tensorboard import SummaryWriter
from note9_LeNet import *
from torch import nn
from torch.utils.data import DataLoader
其中note9_LeNet中存放的是之前的模型文件,大多数情况也这么引入
note9_LeNet.py
import torch
from torch import nn
# 搭建神经网络
class Module(nn.Module):
def __init__(self):
super(Module, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 16, 5),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, 5),
nn.MaxPool2d(2, 2),
nn.Flatten(), # 注意一下,线性层需要进行展平处理
nn.Linear(32*5*5, 120),
nn.Linear(120, 84),
nn.Linear(84, 10)
)
def forward(self, x):
x = self.model(x)
return x
然后回到note9_train.py加载数据集,还是拿CIFAR10开刀
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),download=True)
然后存放到dataloader
# DataLoader 加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
然后设置模型和参数
# 创建网络模型
module = Module()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)
# 训练的轮数
epoch = 12
# 储存路径
work_dir = './LeNet'
# 添加tensorboard
writer = SummaryWriter("{}/logs".format(work_dir))
然后开始训练
两层循环,一层是epoch训练批数,另一层迭代dataloader
for i in range(epoch):
print("-------epoch {} -------".format(i+1))
# 训练步骤
module.train()
for step, [imgs, targets] in enumerate(train_dataloader):
outputs = module(imgs)
loss = loss_fn(outputs, targets)
# 优化器
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_step = len(train_dataloader)*i+step+1
if train_step % 100 == 0:
print("train time:{}, Loss: {}".format(train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), train_step)
# 测试步骤
module.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for imgs, targets in test_dataloader:
outputs = module(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("test set Loss: {}".format(total_test_loss))
print("test set accuracy: {}".format(total_accuracy/len(test_data)))
writer.add_scalar("test_loss", total_test_loss, i)
writer.add_scalar("test_accuracy", total_accuracy/len(test_data), i)
torch.save(module, "{}/module_{}.pth".format(work_dir,i+1))
print("saved epoch {}".format(i+1))
writer.close()
然后加上GPU,分别需要在module、loss、img、traget上,也就是tensor上使用cuda(),修改部分
# 创建网络模型
module = Module()
if torch.cuda.is_available():
module = module.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
以及dataloader取出数据后
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
然后下面是note9_train.py的全部代码
import torchvision
from torch.utils.tensorboard import SummaryWriter
from note9_LeNet import * #网络模型文件
from torch import nn
from torch.utils.data import DataLoader
train_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=True, transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),download=True)
# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
module = Module()
if torch.cuda.is_available():
module = module.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(module.parameters(), lr=learning_rate)
# 训练的轮数
epoch = 12
# 储存路径
work_dir = './LeNet'
# 添加tensorboard
writer = SummaryWriter("{}/logs".format(work_dir))
for i in range(epoch):
print("-------epoch {} -------".format(i+1))
# 训练步骤
module.train()
for step, [imgs, targets] in enumerate(train_dataloader):
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = module(imgs)
loss = loss_fn(outputs, targets)
# 优化器
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_step = len(train_dataloader)*i+step+1
if train_step % 100 == 0:
print("train time:{}, Loss: {}".format(train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), train_step)
# 测试步骤
module.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for imgs, targets in test_dataloader:
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = module(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum() #argmax(1)表示把outputs矩阵中的最大值输出
total_accuracy = total_accuracy + accuracy
print("test set Loss: {}".format(total_test_loss))
print("test set accuracy: {}".format(total_accuracy/len(test_data)))
writer.add_scalar("test_loss", total_test_loss, i)
writer.add_scalar("test_accuracy", total_accuracy/len(test_data), i)
torch.save(module, "{}/module_{}.pth".format(work_dir,i+1))
print("saved epoch {}".format(i+1))
writer.close()
正式训练开始后
运行tensorboard –logdir=LeNet/logs
补:cuda也可以先设置设备
# 定义训练设备
device = torch.device("cuda:0")
然后使用to()方法给tensor调用cuda
module = module.to(device)
loss_fn = loss_fn.to(device)
imgs = imgs.to(device)
targets = targets.to(device)
有关测试部分
import torch
import torchvision
from PIL import Image
from torch import nn
from note9_LeNet import *
image_path = "./dataset/cat_vs_dog/val/cat/cat.10000.jpg"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor()
])
image = transform(image)
print(image.shape)
model = torch.load("LeNet/module_12.pth", map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))