TASK09:使用pytorch实现ResNet图片分类

常用的库

import torch
import torch.nn as nn
import os
from __future__ import division  #导入精确除法,即/表示精确除法,//表示截断除法
from torchvision import models
from torchvision import transforms  #包含resize、crop等常见的data augmentation操作
from PIL import Image
import argparse  #python标准库里面用来处理命令行参数的库
import torchvision
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  #在安装了cuda的设备上可进行gpu运算

读取图片

data_dir = "./hymenoptera_data"  #文件路径
model_name = "resnet"
num_classes = 2
batch_size = 32
num_epochs = 15
feature_extract = True
input_size = 224

all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"), transforms.Compose([
	transforms.RandomResizedCrop(input_size),
	transforms.RandomHorizontalFlip(),
	transforms.ToTensor()]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)

预处理

data_transforms = {
	 "train":transforms.Compose([
	 	transforms.RandomResizedCrop(input_size),
	 	transforms.RandomHorizontalFlip(),
	 	transforms.ToTensor(),
	 	transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])  #训练集图片处理,随机裁剪/随机平移/转化为tensor/标准化
	 	 ]),
	 "val":transforms.Compose([
	 	transforms.Resize(input_size),
	 	transforms.CenterCrop(input_size),
	 	transforms.ToTensor(),
	 	transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])  #验证集处理,重构/中心裁剪/转化为tensor/标准化
	 	 ])
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),data_transforms[x]) for x in ["train", "val"]}
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x],
                    batch_size=batch_size, shuffle=True,num_workers=4 ) for x in ["train", "val"] }

显示图片

img = next(iter(dataloaders_dict["val"]))[0]  #读取验证集中数据next(iterator[, default]),不断返回迭代器的下一个对象

unloader = transforms.ToPILImage()  #从tensor到image的转化
plt.ion()  #开启交互模式,可动态显示图像
def imshow(tensor, title=None):
	image = tensor.cpu().clone()
	image = image.squeeze(0)        #remove the fake batch dimension 降维
	image = unloader(image)
	plt.imshow(image)  #在交互模式下plt.plot(x)或plt.imshow(x)是直接出图像,不需要plt.show()
	if title is not None:
		plt.title(title)
	plt.pause(0.001)  #图像显示指定时间。使用ion()命令开启了交互模式,没有使用ioff()关闭的话,则图像会一闪而过,并不会常留
plt.figure()
imshow(img[31], title='Image')

参数设定及初始化

def set_parameter_requires_grad(model, feature_extract):
	if feature_extract:
		for param in model.parameters():
			param.requires_grad = False  #pytorch,是否需要求该参数的梯度
			
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
	if model_name == "resnet":
		model_ft = models.resnet18(pretrained=use_pretrained)  #使用pytorch中预训练的resnet模型
		set_parameter_requires_grad(model_ft, feature_extract)
		num_ftrs = model_ft.fc.in_features  #提取预训练模型中的固定参数
		model_ft.fc = nn.Linear(num_ftrs, num_classes)  #修改分类类别数
		input_size = 224
	
	else:
		 print("model not implemented")
		 return None,None
return model_ft, input_size

model_ft,input_size = initialize_model(model_name,num_classes,feature_extract,use_pretrained=True)

		

训练过程

def train_model(model, dataloaders, loss_fn, optimizer, num_epochs=5):
	 best_acc = 0
	 best_model_wts = copy.deepcopy(model.state_dict())  #保留权重参数
	 val_acc_history = []  #验证集准确率列表
	 for epoch in range(num_epochs):
	 	 for phase in ["train", "val"]:
	 	 	 running_loss = 0
	 	 	 running_corrects = 0 
	 	 	 if phase == "train":
	 	 	 	 model.train()
	 	 	 else:
	 	 	 	 model.eval()
	 	 	 for inputs, lables in dataloaders[phase]:
	 	 	 	inputs, lables = inputs.to(device), lables.to(device)  #将输入和参数转至GPU加速运算
	 	 		 with torch.autograd.set_grad_enabled(phase=="train"):  #with后紧跟的语句会被求值
	 	 		 	outputs = model(inputs)
	 	 		 	loss = loss_fn(outputs,lables)
	 	 		 preds = outputs.argmax(dim=1)
	 	 		 if phase =="train":
	 	 		 	optimizer.zero_grad()
	 	 		 	loss.backward()
	 	 		 	optimizer.step()
	 	 		 running_loss += loss.item()*inputs.size(0)
	 	 		 running_corrects += torch.sum(preds.view(-1) ==lables.view(-1)).item()
	 	 	epoch_loss = running_loss / len(dataloaders[phase].dataset)
	 	 	epoch_acc = running_corrects / len(dataloaders[phase].dataset)
	 	 	print("Phase{} loss:{},acc:{}".format(phase, epoch_loss, epoch_acc))

			if phase == "val" and epoch_acc > best_acc:
				best_acc = epoch_acc
				best_model_wts = copy.deepcopy(model.state_dict())
			if phase == "val":
				val_acc_history.append(epoch_acc)
		model.load_state_dict(best_model_wts)
		return model
	 	 	 
	 	 	 	

模型训练

model_ft = model_ft.to(device)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,model_ft.parameters()),lr=0.01, momentum=0.9) 
loss_fn = nn.CrossEntropyLoss()
train_model(model_ft, dataloaders_dict, loss_fn, optimizer, num_epochs=num_epochs)

你可能感兴趣的:(学习日记,迁移学习)