- 基础算法枚举,贪心
1.枚举穷举所有可能的解:算法枚举通过尝试所有可能的组合或排列来解决问题,确保不会错过任何潜在的解。并进行验证和比较,找到最优解。或者所有解。解空间的类型:可以是一个范围的所有数字(或二元组,字符串),或者满足某个条件的所有数字。蓝桥杯一题枚举问题小明对数位中含有2、0、1、9的数字很感兴趣(不包括前导0),在1到40中这样的数包括1、2、9、10至32、39和40,共28个,他们的和是574。请
- 【基础算法】贪心 (二) :推公式
让我们一起加油好吗
#贪心基础算法篇(一)算法数据结构贪心算法洛谷数学
文章目录什么是推公式1.拼数⭐⭐(1)解题思路(2)代码实现2.ProtectingtheFlowersS⭐⭐⭐(1)解题思路(2)代码实现3.奶牛玩杂技⭐⭐⭐(1)解题思路(2)代码实现什么是推公式如果细说的话,本篇标题应该叫推公式+排序。推公式就是寻找排序规则,排序就是在该排序规则下对整个对象排序。在解决某些问题的时,当我们发现最终结果需要调整每个对象的先后顺序,也就是对整个对象排序时,那么我
- R7F0C020M2DFB-C#AA0 16位单片机微控制器MCU Renesas
R7F0C020M2DFB特点超低功耗科技:-VDD=1.6~5.5V的单电源、能以1.8V的低电压运行。-HALT模式-STOP模式-SNOOZE模式RL78CPU内核:-3段流水线的CISC哈佛体系结构-最短指令执行时间:能在高速(0.04167μs:以高速内部振荡器时钟24MHz运行时)到超低速(30.5μs:以副系统时钟32.768kHz运行时)之间变换。-地址空间:1M字节-通用寄存器:
- 农业物联网平台中的灌溉系统研究
sj52abcd
农业物联网和人工智能物联网数据分析python大数据毕业设计
研究目的本研究旨在开发一个基于Python语言的农业物联网平台,整合土壤墒情监测与精准灌溉系统,通过现代信息技术手段实现农业生产的智能化管理。系统将采用Python作为主要开发语言,结合MySQL数据库进行数据存储与管理,利用ECharts.js实现数据可视化展示,并引入机器学习和强化学习算法优化灌溉决策。具体目标包括:1)构建实时土壤墒情监测网络,通过物联网传感器采集土壤温湿度、电导率等关键参数
- 用于人形机器人强化学习运动的神经网络架构分析
1.引言:人形机器人运动强化学习中的架构探索人形机器人具备在多样化环境中自主运行的巨大潜力,有望缓解工厂劳动力短缺、协助居家养老以及探索新星球等问题。其拟人化的特性使其在执行类人操作任务(如运动和操纵)方面具有独特优势。深度强化学习(DRL)作为一种前景广阔的无模型方法,能够有效控制双足运动,实现复杂行为的自主学习,而无需显式动力学模型。1.1人形机器人运动强化学习的机遇与挑战尽管DRL取得了显著
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- NVIDIA Isaac GR00T N1.5 人形机器人强化学习入门教程(五)
强化学习与机器人控制仿真
机器人与具身智能人工智能机器人深度学习神经网络强化学习模仿学习具身智能
系列文章目录目录系列文章目录前言一、更深入的理解1.1实体化动作头微调1.1.1实体标签1.1.2工作原理1.1.3支持的实现1.2高级调优参数1.2.1模型组件1.2.1.1视觉编码器(tune_visual)1.2.1.2语言模型(tune_llm)1.2.1.3投影器(tune_projector)1.2.1.4扩散模型(tune_diffusion_model)1.2.2理解数据转换1.2
- 图论基础算法入门笔记
图论基础与建图图的定义图是由若干给定的顶点及连接两顶点的边所构成的图形,顶点用于代表事物,连接两顶点的边用于表示两个事物间的特定关系。建图的概念建图是指找到合适的方法将图表示出来。图的存储方法直接存边存储方式:直接使用一个数组,将边的起点与终点信息存储。代码实现:#includeusingnamespacestd;structEdge{intu,v;//边的起点和终点};intn,m;//n为顶点
- 强化学习:Deep Deterministic Policy Gradient (DDPG) 学习笔记
烨川南
强化学习学习笔记算法人工智能机器学习
一、DDPG是什么?1.1核心概念DDPG=Deep+Deterministic+PolicyGradientDeep:使用深度神经网络和类似DQN的技术(经验回放、目标网络)Deterministic:输出确定的动作(而不是概率分布)PolicyGradient:基于策略梯度的方法,优化策略以最大化累积奖励1.2算法特点特性说明连续动作空间直接输出连续动作值(如方向盘角度、机器人关节扭矩)离线学
- 提升自动驾驶导航能力:基于深度学习的场景理解技术
星辰和大海都需要门票
路径规划算法自动驾驶深度学习人工智能
EnhancingAutonomousVehicleNavigationUsingDeepLearning-BasedSceneUnderstanding提升自动驾驶导航能力:基于深度学习的场景理解技术摘要-为应对复杂环境下的自动驾驶导航,系统高度依赖场景理解的准确性。本研究提出一种基于深度学习的新方法,将目标识别、场景分割、运动预测与强化学习相结合以提升导航性能。该方法首先采用U-Net架构分解
- 【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、微能源网能量管理的基本概念与核心需求二、深度强化学习(DRL)在微能源网中的应用优势三、关键技术挑战四、现有基于DRL的优化策略案例五、相关研究文档的典型结构与撰写规范六、结论与未来方向2运行结果2.1有/无策略奖励2.2训练结果12.2训练结果23参考文献
- 强化学习贝尔曼方程推导
愤怒的可乐
强化学习人工智能概率论机器学习算法
引言强化学习中贝尔曼方程的重要性就不说了,本文利用高中生都能看懂的数学知识推导贝尔曼方程。回报折扣回报GtG_tGt的定义为:Gt=Rt+1+γRt+2+γ2Rt+3+⋯=∑k=0∞γkRt+k+1(1)G_t=R_{t+1}+\gammaR_{t+2}+\gamma^2R_{t+3}+\cdots=\sum_{k=0}^\infty\gamma^kR_{t+k+1}\tag1Gt=Rt+1+γR
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- DeepSeek打破AI天花板:MoE架构+RL推理,效率提升5倍的底层逻辑
m0_74825409
面试学习路线阿里巴巴人工智能架构
文章目录一、引言二、MoE架构:高效计算的核心支撑(一)MoE架构概述(二)DeepSeekMoE架构的创新点(三)MoE架构的代码实现示例三、RL推理:智能提升的关键驱动(一)RL推理概述(二)R1的训练流程(三)RL推理中的关键技术(四)RL推理的代码实现示例四、MoE架构与RL推理的结合:效率提升的奥秘(一)计算效率的提升(二)推理能力的增强(三)整体性能的飞跃五、结论与展望《DeepSee
- Instrct-GPT 强化学习奖励模型 Reward modeling 的训练过程原理实例化详解
John_今天务必休息一天
2_大语言模型基础#2.2生成式预训练语言模型GPTgptlog4j语言模型人工智能自然语言处理算法
Instrct-GPT强化学习奖励模型Rewardmodeling的训练过程原理实例化详解一、批次处理的本质:共享上下文的比较对捆绑(1)为什么同一prompt的比较对必须捆绑?(2)InstructGPT的优化方案二、输入输出与损失函数的具体构造(1)输入输出示例(2)人工标注数据的处理(3)损失函数的计算过程(4)反向传播的核心逻辑三、为什么不需要人工标注分值?(1)排序数据的天然属性(2)避
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- Keras环境复现代码(二)
yanyiche_
Keras机器学习人工智能
PPOCartPole控制算法实践实验要求明确实验目的:学习和实现PPO算法,这是一种改进的策略梯度方法,通过限制策略更新的幅度来提高训练的稳定性。清楚实验原理:PPO算法是一种基于策略梯度的强化学习算法,它旨在解决传统策略梯度方法(如REINFORCE算法)在训练过程中可能出现的策略更新不稳定问题。PPO算法通过引入一种新的策略更新机制,限制每次更新的幅度,从而提高训练的稳定性和效率。PPO算法
- LeetCode第300题_最长递增子序列
@蓝莓果粒茶
算法leetcode算法职场和发展学习c#游戏python
LeetCode第300题:最长递增子序列文章摘要本文详细解析LeetCode第300题"最长递增子序列",这是一道考察动态规划和二分查找的中等难度题目。文章提供了动态规划和贪心+二分查找两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习动态规划和二分查找的读者。核心知识点:动态规划、二分查找、贪心算法难度等级:中等推荐人群:具备基础算法知识,想要提升
- LeetCode第301题_删除无效括号
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习pythonc++
LeetCode第301题:删除无效括号文章摘要本文详细解析LeetCode第301题"删除无效括号",这是一道考察DFS和括号匹配的困难难度题目。文章提供了DFS和BFS两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习深度优先搜索和字符串处理的读者。核心知识点:DFS、BFS、括号匹配、字符串处理难度等级:困难推荐人群:具备基础算法知识,想要提升搜
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 利用视觉-语言模型搭建机器人灵巧操作的支架
三谷秋水
智能体大模型计算机视觉语言模型机器人人工智能计算机视觉机器学习
25年6月来自斯坦福和德国卡尔斯鲁厄理工的论文“ScaffoldingDexterousManipulationwithVision-LanguageModels”。灵巧机械手对于执行复杂的操作任务至关重要,但由于演示收集和高维控制的挑战,其训练仍然困难重重。虽然强化学习(RL)可以通过在模拟中积累经验来缓解数据瓶颈,但它通常依赖于精心设计的、针对特定任务的奖励函数,这阻碍了其可扩展性和泛化能力。
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- 算法-基础算法-枚举算法(Python)
总裁余(余登武)
算法与数据结构算法leetcode
文章目录前言解题思路题目1两数之和2计数质数前言 枚举算法(EnumerationAlgorithm):也称为穷举算法,指的是按照问题本身的性质,一一列举出该问题所有可能的解,并在逐一列举的过程中,将它们逐一与目标状态进行比较以得出满足问题要求的解。在列举的过程中,既不能遗漏也不能重复。 枚举算法的核心思想是:通过列举问题的所有状态,将它们逐一与目标状态进行比较,从而得到满足条件的解。 由于
- 【分治算法】【Python实现】Strassen矩阵乘法
「已注销」
#分治算法分治算法Python
文章目录@[toc]问题描述基础算法时间复杂性Strassen算法时间复杂性问题时间复杂性Python实现个人主页:丷从心·系列专栏:分治算法学习指南:算法学习指南问题描述设AAA和BBB是两个n×nn\timesnn×n矩阵,AAA和BBB的乘积矩阵CCC中元素cij=∑k=1naikbkjc_{ij}=\displaystyle\sum\limits_{k=1}^{n}{a_{ik}b_{kj
- 常见的强化学习算法分类及其特点
ywfwyht
人工智能算法分类人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,通过智能体(Agent)与环境(Environment)的交互来学习如何采取行动以最大化累积奖励。以下是一些常见的强化学习算法分类及其特点:1.基于值函数的算法这些算法通过估计状态或状态-动作对的价值来指导决策。Q-Learning无模型的离线学习算法。通过更新Q值表来学习最优策略。更新公式:Q(s,a)←Q(s,a)
- 星际争霸多智能体挑战赛(SMAC)
资源存储库
多智能体强化学习人工智能
目录TheStarCraftMulti-AgentChallenge星际争霸多智能体挑战赛Abstract摘要1Introduction1引言2RelatedWork2相关工作3Multi-AgentReinforcementLearning3多智能体强化学习Dec-POMDPs12-POMDPs(十二月-POMDP)Centralisedtrainingwithdecentralisedexec
- AlphaStar 星际首秀,人工智能走向星辰大海
谷歌开发者
文/王晶,资深工程师,GoogleBrain团队作者王晶,现为GoogleBrain团队的资深工程师,主要致力深度强化学习的研发,和DeepMind团队在强化学习的应用上有许多合作。北京时间1月25日凌晨2点,DeepMind直播了他们的AIAlphaStar和人类顶尖的职业电竞选手对战星际争霸2。根据DeepMind介绍,AlphaStar在2018年12月10日和19日先后以5:0全胜的战绩击
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p