一个物体既可以按照元素分类法去分类,也可以按照形态分类法去分类。但似乎很难用元素去分类形态,也很难用形态去分类元素。
想用元素分类形态就得加入位置变量。而所谓的位置变量显然是一种空间变量。是粒子在空间中,所以所谓的空间变量似乎并不是粒子的内在属性,是独立于粒子的一种外部的属性。
同样想用形态去分类元素就需要相对长时间的分布平均值,也就是需要加入时间变量。同样似乎也没有理由认为时间是一种形态的内在属性。所以用形态去分类元素也需要一种外部的属性。
但用这两种方法描述的是同一个物体,所以得到了一个等式
基于核电荷数表达的元素是一维的和时间一样,而形态是三维的和空间一样。一个是在空间中运动的元素,一个是在时间中运动的形态,一个标记了时间,一个标记了空间。所以这两种分类方法表达的是空间和时间的对称性吗?
这次继续用质心和标准差的方法去拟合迭代次数。
( A, B )---1*30*2---( 1, 0 )( 0, 1 )
让网络的输入只有1个节点,AB各由9张二值化的图片组成.A全是0,B中有4个1,得到迭代次数表格。
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
迭代次数 |
A-B | ||
1b |
1b |
1b |
0 |
1b |
0 |
0 |
0 |
0 |
39477.176 |
4 |
4+h5 |
0*0*0*0*0*0*0*0*0-1*1*1*0*1*0*0*0*0 |
1b |
1b |
0 |
1b |
1b |
0 |
0 |
0 |
0 |
40518.643 |
4 |
4+h3 |
0*0*0*0*0*0*0*0*0-1*1*0*1*1*0*0*0*0 |
1b |
1b |
1b |
0 |
0 |
0 |
0 |
1b |
0 |
40785.457 |
4 |
4+h1 |
0*0*0*0*0*0*0*0*0-1*0*1*1*1*0*0*0*0 |
1b |
1b |
1b |
0 |
0 |
1b |
0 |
0 |
0 |
40695.387 |
4 |
4+h4 |
0*0*0*0*0*0*0*0*0-1*1*1*0*0*1*0*0*0 |
1b |
1b |
1b |
0 |
0 |
0 |
1b |
0 |
0 |
41968.141 |
4 |
4+h2 |
0*0*0*0*0*0*0*0*0-1*1*1*0*0*0*1*0*0 |
1b |
1b |
0 |
1b |
0 |
1b |
0 |
0 |
0 |
41867.829 |
4 |
4+h12 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*1*0*0*0 |
1b |
1b |
0 |
1b |
0 |
0 |
0 |
1b |
0 |
42412.422 |
4 |
4+h9 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*0*0*1*0 |
1b |
1b |
0 |
0 |
0 |
1b |
1b |
0 |
0 |
42661.869 |
4 |
4+h8 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*1*0*0*0 |
1b |
1b |
0 |
1b |
0 |
0 |
1b |
0 |
0 |
43035.025 |
4 |
4+h11 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*0*1*0*0 |
1b |
1b |
0 |
0 |
0 |
1b |
0 |
1b |
0 |
43201.327 |
4 |
4+h6 |
0*0*0*0*0*0*0*0*0-1*1*0*0*0*1*0*1*0 |
1b |
1b |
0 |
0 |
1b |
0 |
0 |
1b |
0 |
43607.116 |
4 |
4+h7 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*0*0*1*0 |
1b |
1b |
0 |
0 |
1b |
0 |
1b |
0 |
0 |
43949.95 |
4 |
4+h10 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*0*1*0*0 |
1b |
0 |
1b |
0 |
1b |
0 |
1b |
0 |
0 |
44721.779 |
4 |
4+h13 |
0*0*0*0*0*0*0*0*0-1*0*1*0*1*0*1*0*0 |
首先计算质心
1b |
1b |
0 |
0 |
1b |
0 |
0 |
1b |
0 |
分成两步
1b |
1b |
0 |
0 |
1b |
2*x=(4-0.5-x)
X=1.17,质心为1.17+0.5=1.67
第二步计算总的质心
3*x=(7-0.5-1.16666666666667-x)
X=1.33.则总的质心为0.5+1.16666666666667+1.33333333333333=3
计算标准差,这次用一种更为通用的方法去计算标准差
1b |
1b |
1b |
0 |
1b |
0 |
0 |
0 |
0 |
标准差 |
|||||
0 |
0 |
1 |
4 |
1.6394 |
4个1b之间的间距是0,0,1,4,标准差为1.6394.
得到表格
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
迭代次数 |
质心 |
间距 |
标准差 |
1/标准差 |
质心+1/标准差 |
||||||
1b |
1b |
1b |
0 |
1b |
0 |
0 |
0 |
0 |
39477.176 |
4 |
4+h5 |
1.75 |
0 |
0 |
1 |
4 |
1.6394 |
0.609994 |
2.359994281 |
0*0*0*0*0*0*0*0*0-1*1*1*0*1*0*0*0*0 |
1b |
1b |
0 |
1b |
1b |
0 |
0 |
0 |
0 |
40518.643 |
4 |
4+h3 |
2 |
0 |
1 |
0 |
4 |
1.6394 |
0.609994 |
2.609994281 |
0*0*0*0*0*0*0*0*0-1*1*0*1*1*0*0*0*0 |
1b |
1b |
1b |
0 |
0 |
0 |
0 |
1b |
0 |
40785.457 |
4 |
4+h1 |
2.5 |
0 |
0 |
4 |
1 |
1.6394 |
0.609994 |
3.109994281 |
0*0*0*0*0*0*0*0*0-1*0*1*1*1*0*0*0*0 |
1b |
1b |
1b |
0 |
0 |
1b |
0 |
0 |
0 |
40695.387 |
4 |
4+h4 |
2 |
0 |
0 |
2 |
3 |
1.299 |
0.7698 |
2.769800359 |
0*0*0*0*0*0*0*0*0-1*1*1*0*0*1*0*0*0 |
1b |
1b |
1b |
0 |
0 |
0 |
1b |
0 |
0 |
41968.141 |
4 |
4+h2 |
2.25 |
0 |
0 |
2 |
3 |
1.299 |
0.7698 |
3.019800359 |
0*0*0*0*0*0*0*0*0-1*1*1*0*0*0*1*0*0 |
1b |
1b |
0 |
1b |
0 |
1b |
0 |
0 |
0 |
41867.829 |
4 |
4+h12 |
2.25 |
0 |
1 |
1 |
3 |
1.0897 |
0.917663 |
3.167662935 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*1*0*0*0 |
1b |
1b |
0 |
1b |
0 |
0 |
0 |
1b |
0 |
42412.422 |
4 |
4+h9 |
2.75 |
0 |
1 |
3 |
1 |
1.0897 |
0.917663 |
3.667662932 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*0*0*1*0 |
1b |
1b |
0 |
0 |
0 |
1b |
1b |
0 |
0 |
42661.869 |
4 |
4+h8 |
3 |
0 |
3 |
0 |
2 |
1.299 |
0.7698 |
3.769800359 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*1*0*0*0 |
1b |
1b |
0 |
1b |
0 |
0 |
1b |
0 |
0 |
43035.025 |
4 |
4+h11 |
2.5 |
0 |
1 |
2 |
2 |
0.8292 |
1.206045 |
3.706045375 |
0*0*0*0*0*0*0*0*0-1*1*0*1*0*0*1*0*0 |
1b |
1b |
0 |
0 |
0 |
1b |
0 |
1b |
0 |
43201.327 |
4 |
4+h6 |
3.25 |
0 |
3 |
1 |
1 |
1.0897 |
0.917663 |
4.167662935 |
0*0*0*0*0*0*0*0*0-1*1*0*0*0*1*0*1*0 |
1b |
1b |
0 |
0 |
1b |
0 |
0 |
1b |
0 |
43607.116 |
4 |
4+h7 |
3 |
0 |
2 |
2 |
1 |
0.8292 |
1.206045 |
4.206045378 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*0*0*1*0 |
1b |
1b |
0 |
0 |
1b |
0 |
1b |
0 |
0 |
43949.95 |
4 |
4+h10 |
2.75 |
0 |
2 |
1 |
2 |
0.8292 |
1.206045 |
3.956045378 |
0*0*0*0*0*0*0*0*0-1*1*0*0*1*0*1*0*0 |
1b |
0 |
1b |
0 |
1b |
0 |
1b |
0 |
0 |
44721.779 |
4 |
4+h13 |
3 |
1 |
1 |
1 |
2 |
0.433 |
2.309401 |
5.309401077 |
0*0*0*0*0*0*0*0*0-1*0*1*0*1*0*1*0*0 |
迭代次数和质心成正比
迭代次数和标准差成反比
用标准差的倒数去修正质心的数据得到曲线y=质心+1/标准差
曲线y和迭代次数成正比,平滑很多。
数据
1b | 0 | 0 | 0 | 0 | 0 | 1b | 1b | 1b | 38034.7 | 4 |
0 | 0 | 0 | 0 | 1b | 1b | 1b | 1b | 0 | 38064.89 | 4 |
0 | 1b | 1b | 1b | 1b | 0 | 0 | 0 | 0 | 38075.63 | 4 |
0 | 0 | 0 | 0 | 0 | 1b | 1b | 1b | 1b | 38150.92 | 4 |
1b | 1b | 0 | 0 | 0 | 0 | 0 | 1b | 1b | 38178.89 | 4 |
0 | 0 | 1b | 1b | 1b | 1b | 0 | 0 | 0 | 38215.21 | 4 |
1b | 1b | 1b | 0 | 0 | 0 | 0 | 0 | 1b | 38222.41 | 4 |
0 | 0 | 0 | 1b | 1b | 1b | 1b | 0 | 0 | 38381.92 | 4 |
1b | 1b | 0 | 1b | 0 | 0 | 0 | 0 | 1b | 39470.74 | 4+h5 |
1b | 1b | 1b | 0 | 1b | 0 | 0 | 0 | 0 | 39477.18 | 4+h5 |
0 | 0 | 1b | 1b | 1b | 0 | 1b | 0 | 0 | 39590.89 | 4+h5 |
1b | 0 | 0 | 0 | 0 | 1b | 1b | 1b | 0 | 39596.71 | 4+h5 |
0 | 0 | 0 | 0 | 1b | 1b | 1b | 0 | 1b | 39630.62 | 4+h5 |
1b | 0 | 1b | 0 | 0 | 0 | 0 | 1b | 1b | 39655.98 | 4+h5 |
0 | 0 | 0 | 1b | 1b | 1b | 0 | 1b | 0 | 39659.56 | 4+h5 |
0 | 1b | 1b | 1b | 0 | 1b | 0 | 0 | 0 | 39696.35 | 4+h5 |
0 | 1b | 0 | 0 | 0 | 0 | 1b | 1b | 1b | 39733.4 | 4+h5 |
0 | 0 | 1b | 1b | 0 | 1b | 1b | 0 | 0 | 40364.98 | 4+h3 |
0 | 1b | 1b | 0 | 0 | 0 | 0 | 1b | 1b | 40397.87 | 4+h3 |
1b | 0 | 0 | 0 | 0 | 1b | 1b | 0 | 1b | 40414.13 | 4+h3 |
0 | 0 | 0 | 0 | 1b | 1b | 0 | 1b | 1b | 40443.07 | 4+h3 |
0 | 1b | 1b | 0 | 1b | 1b | 0 | 0 | 0 | 40462.3 | 4+h3 |
1b | 1b | 0 | 0 | 0 | 0 | 1b | 1b | 0 | 40489.76 | 4+h3 |
1b | 1b | 0 | 1b | 1b | 0 | 0 | 0 | 0 | 40518.64 | 4+h3 |
0 | 0 | 0 | 1b | 1b | 0 | 1b | 1b | 0 | 40525.64 | 4+h3 |
1b | 1b | 0 | 0 | 0 | 0 | 1b | 0 | 1b | 40600.29 | 4+h1 |
1b | 0 | 1b | 1b | 0 | 0 | 0 | 0 | 1b | 40614.69 | 4+h3 |
0 | 0 | 0 | 1b | 0 | 1b | 1b | 1b | 0 | 40669.64 | 4+h1 |
1b | 1b | 0 | 0 | 1b | 0 | 0 | 0 | 1b | 40680.36 | 4+h4 |
0 | 1b | 0 | 0 | 0 | 1b | 1b | 1b | 0 | 40685.67 | 4+h4 |
1b | 1b | 1b | 0 | 0 | 1b | 0 | 0 | 0 | 40695.39 | 4+h4 |
0 | 1b | 1b | 1b | 0 | 0 | 0 | 0 | 1b | 40718.44 | 4+h1 |
0 | 1b | 0 | 1b | 1b | 1b | 0 | 0 | 0 | 40738.36 | 4+h1 |
1b | 0 | 0 | 1b | 0 | 0 | 0 | 1b | 1b | 40747.02 | 4+h4 |
0 | 0 | 0 | 1b | 1b | 1b | 0 | 0 | 1b | 40774.38 | 4+h4 |
1b | 1b | 1b | 0 | 0 | 0 | 0 | 1b | 0 | 40785.46 | 4+h1 |
1b | 0 | 1b | 1b | 1b | 0 | 0 | 0 | 0 | 40794.88 | 4+h1 |
0 | 0 | 0 | 0 | 1b | 0 | 1b | 1b | 1b | 40800.17 | 4+h1 |
0 | 0 | 1b | 0 | 1b | 1b | 1b | 0 | 0 | 40816.7 | 4+h1 |
1b | 0 | 0 | 0 | 1b | 1b | 1b | 0 | 0 | 40821.25 | 4+h4 |
0 | 1b | 1b | 1b | 0 | 0 | 1b | 0 | 0 | 40833.61 | 4+h4 |
0 | 0 | 1b | 1b | 1b | 0 | 0 | 1b | 0 | 40855.6 | 4+h4 |
0 | 0 | 1b | 0 | 0 | 0 | 1b | 1b | 1b | 40931.26 | 4+h4 |
1b | 0 | 0 | 0 | 0 | 1b | 0 | 1b | 1b | 40941.11 | 4+h1 |
0 | 0 | 0 | 1b | 0 | 0 | 1b | 1b | 1b | 41590.38 | 4+h2 |
0 | 1b | 0 | 0 | 0 | 1b | 1b | 0 | 1b | 41739.26 | 4+h12 |
1b | 0 | 0 | 0 | 1b | 1b | 0 | 1b | 0 | 41748.74 | 4+h12 |
1b | 0 | 1b | 0 | 0 | 0 | 1b | 1b | 0 | 41775.63 | 4+h12 |
1b | 0 | 0 | 0 | 1b | 0 | 0 | 1b | 1b | 41796.71 | 4+h2 |
0 | 1b | 1b | 0 | 1b | 0 | 1b | 0 | 0 | 41835.91 | 4+h12 |
0 | 1b | 0 | 0 | 1b | 1b | 1b | 0 | 0 | 41861.36 | 4+h2 |
1b | 1b | 0 | 1b | 0 | 1b | 0 | 0 | 0 | 41867.83 | 4+h12 |
1b | 1b | 0 | 0 | 0 | 1b | 0 | 0 | 1b | 41882.02 | 4+h2 |
0 | 1b | 1b | 1b | 0 | 0 | 0 | 1b | 0 | 41889.73 | 4+h2 |
0 | 1b | 0 | 1b | 0 | 0 | 0 | 1b | 1b | 41897.48 | 4+h12 |
1b | 0 | 1b | 0 | 1b | 0 | 0 | 0 | 1b | 41922.54 | 4+h12 |
1b | 0 | 0 | 1b | 1b | 1b | 0 | 0 | 0 | 41943.03 | 4+h2 |
0 | 0 | 1b | 0 | 0 | 1b | 1b | 1b | 0 | 41948.11 | 4+h2 |
1b | 1b | 1b | 0 | 0 | 0 | 1b | 0 | 0 | 41968.14 | 4+h2 |
0 | 0 | 1b | 1b | 0 | 1b | 0 | 1b | 0 | 41987.61 | 4+h12 |
0 | 0 | 0 | 1b | 1b | 0 | 1b | 0 | 1b | 42030.67 | 4+h12 |
0 | 0 | 1b | 1b | 1b | 0 | 0 | 0 | 1b | 42043.6 | 4+h2 |
1b | 0 | 1b | 1b | 0 | 1b | 0 | 0 | 0 | 42119.11 | 4+h9 |
1b | 0 | 0 | 0 | 1b | 0 | 1b | 1b | 0 | 42250.48 | 4+h9 |
0 | 0 | 0 | 1b | 0 | 1b | 1b | 0 | 1b | 42272.18 | 4+h9 |
0 | 1b | 0 | 0 | 0 | 1b | 0 | 1b | 1b | 42282.24 | 4+h9 |
0 | 1b | 0 | 1b | 1b | 0 | 1b | 0 | 0 | 42297.94 | 4+h9 |
1b | 0 | 1b | 0 | 0 | 0 | 1b | 0 | 1b | 42342.04 | 4+h9 |
1b | 1b | 0 | 1b | 0 | 0 | 0 | 1b | 0 | 42412.42 | 4+h9 |
0 | 1b | 1b | 0 | 1b | 0 | 0 | 0 | 1b | 42417.5 | 4+h9 |
0 | 0 | 1b | 0 | 1b | 1b | 0 | 1b | 0 | 42432.81 | 4+h9 |
1b | 1b | 0 | 0 | 1b | 1b | 0 | 0 | 0 | 42514.65 | 4+h8 |
0 | 1b | 1b | 0 | 0 | 1b | 1b | 0 | 0 | 42547.77 | 4+h8 |
0 | 0 | 1b | 1b | 0 | 0 | 1b | 1b | 0 | 42601.33 | 4+h8 |
1b | 0 | 0 | 0 | 1b | 1b | 0 | 0 | 1b | 42646.66 | 4+h8 |
1b | 1b | 0 | 0 | 0 | 1b | 1b | 0 | 0 | 42661.87 | 4+h8 |
0 | 0 | 1b | 1b | 0 | 0 | 0 | 1b | 1b | 42719.69 | 4+h8 |
0 | 1b | 1b | 0 | 0 | 0 | 1b | 1b | 0 | 42767.35 | 4+h8 |
1b | 0 | 0 | 1b | 1b | 0 | 0 | 0 | 1b | 42781.3 | 4+h8 |
0 | 0 | 0 | 1b | 1b | 0 | 0 | 1b | 1b | 42890.42 | 4+h8 |
0 | 0 | 1b | 1b | 0 | 1b | 0 | 0 | 1b | 42908.32 | 4+h11 |
0 | 1b | 1b | 0 | 1b | 0 | 0 | 1b | 0 | 42954.08 | 4+h11 |
1b | 1b | 0 | 1b | 0 | 0 | 1b | 0 | 0 | 43035.03 | 4+h11 |
0 | 1b | 0 | 0 | 1b | 0 | 0 | 1b | 1b | 43036.09 | 4+h11 |
1b | 0 | 0 | 1b | 1b | 0 | 1b | 0 | 0 | 43040.57 | 4+h11 |
1b | 0 | 0 | 1b | 0 | 0 | 1b | 1b | 0 | 43044.13 | 4+h11 |
0 | 0 | 1b | 0 | 0 | 1b | 1b | 0 | 1b | 43049.19 | 4+h11 |
0 | 1b | 0 | 0 | 1b | 1b | 0 | 1b | 0 | 43117.74 | 4+h11 |
1b | 1b | 0 | 0 | 0 | 1b | 0 | 1b | 0 | 43201.33 | 4+h6 |
1b | 0 | 1b | 0 | 0 | 1b | 0 | 0 | 1b | 43214.11 | 4+h11 |
0 | 1b | 1b | 0 | 0 | 0 | 1b | 0 | 1b | 43260.58 | 4+h6 |
0 | 0 | 0 | 1b | 0 | 1b | 0 | 1b | 1b | 43264.8 | 4+h6 |
0 | 0 | 1b | 0 | 1b | 0 | 1b | 1b | 0 | 43307.4 | 4+h6 |
0 | 1b | 0 | 1b | 0 | 1b | 1b | 0 | 0 | 43311.28 | 4+h6 |
1b | 0 | 1b | 0 | 1b | 1b | 0 | 0 | 0 | 43325.11 | 4+h6 |
1b | 0 | 0 | 0 | 1b | 0 | 1b | 0 | 1b | 43338.26 | 4+h6 |
0 | 1b | 0 | 1b | 1b | 0 | 0 | 0 | 1b | 43366.07 | 4+h6 |
1b | 0 | 1b | 1b | 0 | 0 | 0 | 1b | 0 | 43421.87 | 4+h6 |
1b | 0 | 0 | 1b | 0 | 0 | 1b | 0 | 1b | 43546.95 | 4+h7 |
0 | 0 | 1b | 0 | 0 | 1b | 0 | 1b | 1b | 43593.53 | 4+h7 |
1b | 1b | 0 | 0 | 1b | 0 | 0 | 1b | 0 | 43607.12 | 4+h7 |
0 | 1b | 0 | 1b | 1b | 0 | 0 | 1b | 0 | 43651.83 | 4+h7 |
1b | 0 | 0 | 1b | 0 | 1b | 1b | 0 | 0 | 43652.3 | 4+h7 |
0 | 0 | 1b | 0 | 1b | 1b | 0 | 0 | 1b | 43683.95 | 4+h7 |
0 | 1b | 0 | 0 | 1b | 0 | 1b | 1b | 0 | 43751.72 | 4+h7 |
1b | 0 | 1b | 1b | 0 | 0 | 1b | 0 | 0 | 43780.44 | 4+h7 |
0 | 1b | 1b | 0 | 0 | 1b | 0 | 0 | 1b | 43847.82 | 4+h7 |
0 | 0 | 1b | 0 | 1b | 0 | 0 | 1b | 1b | 43887.97 | 4+h10 |
1b | 1b | 0 | 0 | 1b | 0 | 1b | 0 | 0 | 43949.95 | 4+h10 |
0 | 0 | 1b | 1b | 0 | 0 | 1b | 0 | 1b | 43978.46 | 4+h10 |
0 | 1b | 1b | 0 | 0 | 1b | 0 | 1b | 0 | 44030.46 | 4+h10 |
1b | 0 | 0 | 1b | 0 | 1b | 0 | 0 | 1b | 44062.37 | 4+h10 |
0 | 1b | 0 | 0 | 1b | 1b | 0 | 0 | 1b | 44101.23 | 4+h10 |
0 | 1b | 0 | 1b | 0 | 0 | 1b | 1b | 0 | 44151.27 | 4+h10 |
1b | 0 | 0 | 1b | 1b | 0 | 0 | 1b | 0 | 44171.77 | 4+h10 |
1b | 0 | 1b | 0 | 0 | 1b | 1b | 0 | 0 | 44182.55 | 4+h10 |
0 | 1b | 0 | 1b | 0 | 1b | 0 | 1b | 0 | 44715.64 | 4+h13 |
1b | 0 | 1b | 0 | 1b | 0 | 1b | 0 | 0 | 44721.78 | 4+h13 |
0 | 1b | 0 | 1b | 0 | 1b | 0 | 0 | 1b | 44763.38 | 4+h13 |
1b | 0 | 1b | 0 | 1b | 0 | 0 | 1b | 0 | 44788.87 | 4+h13 |
0 | 1b | 0 | 1b | 0 | 0 | 1b | 0 | 1b | 44819.71 | 4+h13 |
1b | 0 | 0 | 1b | 0 | 1b | 0 | 1b | 0 | 44830.89 | 4+h13 |
1b | 0 | 1b | 0 | 0 | 1b | 0 | 1b | 0 | 44978.35 | 4+h13 |
0 | 0 | 1b | 0 | 1b | 0 | 1b | 0 | 1b | 45037.3 | 4+h13 |
0 | 1b | 0 | 0 | 1b | 0 | 1b | 0 | 1b | 45104.25 | 4+h13 |