提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
这里介绍下ggplot
绘图 过程中遇到的一些问题:
#1、引用R包:
library(ggplot2)
#2、绘制主图型:
qplot(x=hhtime, y=staytime, data=plotdata)
#3、自定义横坐标显示----日期型横坐标
library(ggplot2)
qplot(x=hhtime, y=staytime, data=plotdata)+
scale_x_continuous(breaks = as.POSIXct(paste("2012-01-01",c("00:00","04:00","08:00","12:00","16:00","20:00","24:00"))),
labels = c("00:00","04:00","08:00","12:00","16:00","20:00","24:00"))+
## 指定每条线各自的颜色----需要对数据进行转换
geom_line(data=plotdata3,aes(x=time_h,y=value,colour=variable),size = 1.15)+
ylim(0,2000)+labs(x = "Arrival Time")
##此种情况需要进行长款数据类型转换,这里不多说,以后专门篇章书写,优点省事,只需转换数据格式即可
#4、自定义每条线----优点每条线分别定义,自由度高,缺点代码繁琐
qplot(x=hhtime, y=staytime, data=plotdata)+
geom_line(aes(time_h,staytime,group = 1,color="staytime"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,lr,group = 1,color="lr"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,lasso,group = 1,color="lasso"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,ridge,group = 1,color="ridge"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,gbdt,group = 1,color="gbdt"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,lgb,group = 1,color="lgb"),data = plotdata2,size=1.15)+
geom_line(aes(time_h,xgb,group = 1,color="xgb"),data = plotdata2,size=1.15)+
## 限定Y轴坐标显示
ylim(0, 2000)+
## 指定日期X轴坐标展示
scale_x_continuous(breaks = as.POSIXct(paste("2012-01-01",c("00:00","04:00","08:00","12:00","16:00","20:00","24:00"))),
labels = c("00:00","04:00","08:00","12:00","16:00","20:00","24:00"))+
## 指定各自线条图例的颜色----不加这一步则使用各自默认颜色
scale_color_manual(values = c( "staytime" = "#CC0033",
"lr" = "#33FFFF",
"lasso" = "#CCFF33",
"ridge" = "#9999FF",
"gbdt" = "#FFCC66",
"lgb" = "#FF99FF",
"xgb" = "#33CC99") )
在本地我们进行了重现,以下是代码展示
#### 导入数据
data <- rio::import("data.xlsx")
#### 目的使用管道函数 %>%
library(dplyr)
#### 目的宽数据转长数据 gather
library(tidyr)
#### 对数据进行格式变换
plor_bar <- data %>% gather(key="Meds", value = "Response",2:8)
#### 引入绘图包
library(ggplot2)
#### 进行绘图
ggplot(plor_bar) +
geom_bar(aes(x = Meds, fill = Response),position = 'dodge') +
facet_wrap(~ Area_of_Speciality)
以下为绘图效果展示
根据自身理解,修改对方代码,以达到对方需求,(不排除自己理解错误!)
其实这里仅仅是修改了一个函数
ggplot(plor_bar) +
geom_bar(aes(x = Meds, fill = Response),position = 'dodge') +
facet_grid(~ Area_of_Speciality)
以下为绘图效果展示
更多关于ggplot
的知识,欢迎CSDN中查找!
以上内容如有不适,请及时联系,在下及时更正!