'''''''''
构建一个RNN分类器
任务:一个名称分类器,根据输入的名字判断其国籍,数据集有Name与Country
在这个场景中,由于输出无法通过线性层映射到某个维度,所以可以只用hn来连接线性层,对这个输入做一个18维的分类
'''''''''
import csv
import gzip
import torch
import matplotlib.pyplot as plt
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader
device = torch.device('cuda:0')
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
class NameDataset(Dataset):
def __init__(self,is_train_set = True):
filename = 'F:\\mnist\\names_train.csv.gz' if is_train_set else 'F:\\mnist\\names_test.csv.gz'
with gzip.open(filename,'rt') as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows]
self.len = len(self.names)
self.countries = [row[1] for row in rows]
self.country_list = list(sorted(set(self.countries)))
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list)
def __getitem__(self,index):
return self.names[index],self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict = dict()
for idx,counrty_name in enumerate(self.country_list,0):
country_dict[counrty_name] = idx
return country_dict
def idx2country(self,index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num
trainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset,batch_size=BATCH_SIZE,shuffle=False)
N_COUNTRY = trainset.getCountriesNum()
class RNNClassifier(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1
self.embedding = torch.nn.Embedding(input_size,hidden_size)
self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size)
def _init_hidden(self,batch_size):
hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)
return hidden.to(device)
def forward(self,input,seq_lengths):
input = input.t()
batch_size = input.size(1)
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input)
gru_input = pack_padded_sequence(embedding,seq_lengths.cpu())
output,hidden = self.gru(gru_input,hidden)
if self.n_directions == 2:
hidden_cat = torch.cat((hidden[-1],hidden[-2]),dim=1)
else:
hiddden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
def name2list(name):
arr = [ord(c) for c in name]
return arr,len(arr)
def make_tensors(names,countries):
sequences_and_lengths = [name2list(name) for name in names]
name_sequences = [sl[0] for sl in sequences_and_lengths]
seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
countries = countries.long()
seq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()
for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
seq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return seq_tensor.to(device),seq_lengths.to(device),countries.to(device)
classifier = RNNClassifier(N_CHARS,HIDDEN_SIZE,N_COUNTRY,N_LAYER,True).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(),lr=0.001)
def trainModel():
total_loss = 0
for i,(names,countries) in enumerate(trainloader,1):
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths)
loss = criterion(output,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i%10 == 0:
print(f'Epoch{epoch}',end='')
print(f'[{i*len(inputs)}/{len(trainset)}]',end='')
print(f'loss={total_loss/(i*len(inputs))}')
return total_loss
def testModel():
correct = 0
total = len(testset)
print('evaluating trained model ...')
with torch.no_grad():
for i,(names,countries) in enumerate(testloader,1):
inputs,seq_lengths,target = make_tensors(names,countries)
output = classifier(inputs,seq_lengths)
pred = output.max(dim=1,keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' % (100*correct/total)
print(f'Test set: Accuracy{correct}/{total} {percent}%')
return correct/total
print('Training for %d epochs...' % N_EPOCHS)
acc_list = []
for epoch in range(1,30):
trainModel()
acc = testModel()
acc_list.append(acc)
epoch = np.arange(1,len(acc_list)+1,1)
acc_list = np.array(acc_list)
plt.plot(epoch,acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()