KOOM V1.0.5 框架解析

快手在2020年中旬开源了一个线上OOM监控上报的框架:KOOM,这里简单研究下。

项目地址:https://github.com/KwaiAppTeam/KOOM/tree/v1.0.5

一、官方项目介绍

1.1 描述:
KOOM是快手性能优化团队在处理移动端OOM问题的过程中沉淀出的一套完整解决方案。其中Android Java内存部分在LeakCanary的基础上进行了大量优化,解决了线上内存监控的性能问题,在不影响用户体验的前提下线上采集内存镜像并解析。从 2020 年春节后在快手主APP上线至今解决了大量OOM问题,其性能和稳定性经受住了海量用户与设备的考验,因此决定开源以回馈社区。

1.2 特点:

  • 比leakCanary更丰富的泄漏场景检测;
  • 比leakCanary更好的检测性能;
  • 功能全面的支持线上大规模部署的闭环监控系统;

1.3 KOOM框架


1.4 快手KOOM核心流程包括:

  • 配置下发决策;
  • 监控内存状态;
  • 采集内存镜像;
  • 解析镜像文件(以下简称hprof)生成报告并上传;
  • 问题聚合报警与分配跟进。

1.5 泄漏检测触发机制优化:
泄漏检测触发机制leakCanary做法是GC过后对象WeakReference一直不被加入 ReferenceQueue,它可能存在内存泄漏。这个过程会主动触发GC做确认,可能会造成用户可感知的卡顿,而KOOM采用内存阈值监控来触发镜像采集,将对象是否泄漏的判断延迟到了解析时,阈值监控只要在子线程定期获取关注的几个内存指标即可,性能损耗很低。

1.6 heap dump优化:
传统方案会冻结应用几秒,KOOM会fork新进程来执行dump操作,对父进程的正常执行没有影响。暂停虚拟机需要调用虚拟机的art::Dbg::SuspendVM函数,谷歌从Android 7.0开始对调用系统库做了限制,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制。

随机采集线上真实用户的内存镜像,普通dump和fork子进程dump阻塞用户使用的耗时如下:

image.png

而从官方给出的测试数据来看,效果似乎是非常好的。

二、官方demo演示

这里就直接跑下官方提供的koom-demo

点击按钮,经过dump heap -> heap analysis -> report cache/koom/report/三个流程(heap analysis时间会比较长,但是完全不影响应用的正常操作),最终在应用的cache/koom/report里生成json报告:

cepheus:/data/data/com.kwai.koom.demo/cache/koom/report # ls
2020-12-08_15-23-32.json

模拟一个最简单的单例CommonUtils持有LeakActivity实例的内存泄漏,看下json最终上报的内容是个啥:

{
   "analysisDone":true,
   "classInfos":[
       {
           "className":"android.app.Activity",
           "instanceCount":4,
           "leakInstanceCount":3
       },
       {
           "className":"android.app.Fragment",
           "instanceCount":4,
           "leakInstanceCount":3
       },
       {
           "className":"android.graphics.Bitmap",
           "instanceCount":115,
           "leakInstanceCount":0
       },
       {
           "className":"libcore.util.NativeAllocationRegistry",
           "instanceCount":1513,
           "leakInstanceCount":0
       },
       {
           "className":"android.view.Window",
           "instanceCount":4,
           "leakInstanceCount":0
       }
   ],
   "gcPaths":[
       {
           "gcRoot":"Local variable in native code",
           "instanceCount":1,
           "leakReason":"Activity Leak",
           "path":[
               {
                   "declaredClass":"java.lang.Thread",
                   "reference":"android.os.HandlerThread.contextClassLoader",
                   "referenceType":"INSTANCE_FIELD"
               },
               {
                   "declaredClass":"java.lang.ClassLoader",
                   "reference":"dalvik.system.PathClassLoader.runtimeInternalObjects",
                   "referenceType":"INSTANCE_FIELD"
               },
               {
                   "declaredClass":"",
                   "reference":"java.lang.Object[]",
                   "referenceType":"ARRAY_ENTRY"
               },
               {
                   "declaredClass":"com.kwai.koom.demo.CommonUtils",
                   "reference":"com.kwai.koom.demo.CommonUtils.context",
                   "referenceType":"STATIC_FIELD"
               },
               {
                   "reference":"com.kwai.koom.demo.LeakActivity",
                   "referenceType":"instance"
               }
           ],
           "signature":"378fc01daea06b6bb679bd61725affd163d026a8"
       }
   ],
   "runningInfo":{
       "analysisReason":"RIGHT_NOW",
       "appVersion":"1.0",
       "buildModel":"MI 9 Transparent Edition",
       "currentPage":"LeakActivity",
       "dumpReason":"MANUAL_TRIGGER",
       "jvmMax":512,
       "jvmUsed":2,
       "koomVersion":1,
       "manufacture":"Xiaomi",
       "nowTime":"2020-12-08_16-07-34",
       "pss":32,
       "rss":123,
       "sdkInt":29,
       "threadCount":17,
       "usageSeconds":40,
       "vss":5674
   }
}

这里主要分三个部分:类信息、gc引用路径、运行基本信息。这里从gcPaths中能看出LeakActivity被CommonUtils持有了引用。

框架使用这里参考官方接入文档即可,这里不赘述:
https://github.com/KwaiAppTeam/KOOM/blob/master/README.zh-CN.md

三、框架解析

3.1 类图

3.2 时序图

KOOM初始化流程

KOOM执行初始化方法,10秒延迟之后会在threadHandler子线程中先通过check状态判断是否开始工作,工作内容是先检查是不是有未完成分析的文件,如果有就就触发解析,没有则监控内存。

heap dump流程

HeapDumpTrigger

  • startTrack:监控自动触发dump hprof操作。开启内存监控,子线程5s触发一次检测,看当前是否满足触发heap dump的条件。条件是由一系列阀值组织,这部分后面详细分析。满足阀值后会通过监听回调给HeapDumpTrigger去执行trigger。
  • trigger:主动触发dump hprof操作。这里是fork子进程来处理的,这部分也到后面详细分析。dump完成之后通过监听回调触发HeapAnalysisTrigger.startTrack触发heap分析流程。

heap analysis流程

HeapAnalysisTrigger

  • startTrack 根据策略触发hprof文件分析。
  • trigger 直接触发hprof文件分析。由单独起进程的service来处理,工作内容主要分内存泄漏检测(activity/fragment/bitmap/window)和泄漏数据整理缓存为json文件以供上报。

四、核心源码解析

经过前面的分析,基本上对框架的使用和结构有了一个宏观了解,这部分就打算对一些实现细节进行简单分析。
4.1 内存监控触发dump规则

这里主要是研究HeapMonitor中isTrigger规则,每隔5S都会循环判断该触发条件。

com/kwai/koom/javaoom/monitor/HeapMonitor.java
@Override
public boolean isTrigger() {
  if (!started) {
   return false;
  }
  HeapStatus heapStatus = currentHeapStatus();
  if (heapStatus.isOverThreshold) {
   if (heapThreshold.ascending()) {
     if (lastHeapStatus == null || heapStatus.used >= lastHeapStatus.used) {
       currentTimes++;
     } else {
       currentTimes = 0;
     }
   } else {
     currentTimes++;
   }
  } else {
   currentTimes = 0;
  }
  lastHeapStatus = heapStatus;
  return currentTimes >= heapThreshold.overTimes();
}
private HeapStatus lastHeapStatus;
private HeapStatus currentHeapStatus() {
  HeapStatus heapStatus = new HeapStatus();
  heapStatus.max = Runtime.getRuntime().maxMemory();
  heapStatus.used = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
  heapStatus.isOverThreshold = 100.0f * heapStatus.used / heapStatus.max > heapThreshold.value();
  return heapStatus;
}

com/kwai/koom/javaoom/common/KConstants.java

public static class HeapThreshold {
  public static int VM_512_DEVICE = 510;
  public static int VM_256_DEVICE = 250;
  public static int VM_128_DEVICE = 128;
  public static float PERCENT_RATIO_IN_512_DEVICE = 80;
  public static float PERCENT_RATIO_IN_256_DEVICE = 85;
  public static float PERCENT_RATIO_IN_128_DEVICE = 90;

  public static float getDefaultPercentRation() {
   int maxMem = (int) (Runtime.getRuntime().maxMemory() / MB);
   if (maxMem >= VM_512_DEVICE) {
     return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
   } else if (maxMem >= VM_256_DEVICE) {
     return KConstants.HeapThreshold.PERCENT_RATIO_IN_256_DEVICE;
   } else if (maxMem >= VM_128_DEVICE) {
     return KConstants.HeapThreshold.PERCENT_RATIO_IN_128_DEVICE;
   }
   return KConstants.HeapThreshold.PERCENT_RATIO_IN_512_DEVICE;
  }

  public static int OVER_TIMES = 3;
  public static int POLL_INTERVAL = 5000;
}

这里就是针对不同内存大小做了不同的阀值比例:

  • 应用内存>512M 80%
  • 应用内存>256M 85%
  • 应用内存>128M 90%
  • 低于128M的默认按80%

应用已使用内存/最大内存超过该比例则会触发heapStatus.isOverThreshold。连续满足3次触发heap dump,但是这个过程会考虑内存增长性,3次范围内出现了使用内存下降或者使用内存/最大内存低于对应阀值了则清零。

因此规则总结为:3次满足>阀值条件且内存一直处于上升期才触发。这样能减少无效的dump。

4.2 fork进程执行dump操作实现

目前项目中默认使用ForkJvmHeapDumper来执行dump。

com/kwai/koom/javaoom/dump/ForkJvmHeapDumper.java
@Override
public boolean dump(String path) {
  boolean dumpRes = false;
  try {
   int pid = trySuspendVMThenFork();//暂停虚拟机,copy-on-write fork子进程
   if (pid == 0) {//子进程中
     Debug.dumpHprofData(path);//dump hprof
     exitProcess();//_exit(0) 退出进程
   } else {//父进程中
     resumeVM();//resume当前虚拟机
     dumpRes = waitDumping(pid);//waitpid异步等待pid进程结束
   }
  } catch (Exception e) {
   e.printStackTrace();
  }
  return dumpRes;
}

谷歌从Android 7.0开始对调用系统库做了限制,快手自研了kwai-linker组件,通过caller address替换和dl_iterate_phdr解析绕过了这一限制,详细分析在后续的这篇文章有展开:KOOM V1.0.5 fork dump方案解析。

官方文档对限制的说明:
https://developer.android.google.cn/about/versions/nougat/android-7.0-changes

4.3 内存泄漏检测实现

内存泄漏检测核心代码在于SuspicionLeaksFinder.find

public Pair, List> find() {
  boolean indexed = buildIndex();
  if (!indexed) {
   return null;
  }
  initLeakDetectors();
  findLeaks();
  return findPath();
}

4.3.1 buildIndex()

private boolean buildIndex() {
  Hprof hprof = Hprof.Companion.open(hprofFile.file());
  //选择可以作为gcroot的类类型
  KClass[] gcRoots = new KClass[]{
     Reflection.getOrCreateKotlinClass(GcRoot.JniGlobal.class),
     //Reflection.getOrCreateKotlinClass(GcRoot.JavaFrame.class),
     Reflection.getOrCreateKotlinClass(GcRoot.JniLocal.class),
     //Reflection.getOrCreateKotlinClass(GcRoot.MonitorUsed.class),
     Reflection.getOrCreateKotlinClass(GcRoot.NativeStack.class),
     Reflection.getOrCreateKotlinClass(GcRoot.StickyClass.class),
     Reflection.getOrCreateKotlinClass(GcRoot.ThreadBlock.class),
     Reflection.getOrCreateKotlinClass(GcRoot.ThreadObject.class),
     Reflection.getOrCreateKotlinClass(GcRoot.JniMonitor.class)};

  //解析hprof文件为HeapGraph对象
  heapGraph = HprofHeapGraph.Companion.indexHprof(hprof, null,
     kotlin.collections.SetsKt.setOf(gcRoots));
  return true;
}

fun indexHprof(
   hprof: Hprof,
   proguardMapping: ProguardMapping? = null,
   indexedGcRootTypes: Set> = setOf(
       JniGlobal::class,
       JavaFrame::class,
       JniLocal::class,
       MonitorUsed::class,
       NativeStack::class,
       StickyClass::class,
       ThreadBlock::class,
       ThreadObject::class,
       JniMonitor::class
   )
): HeapGraph {
  //确认对应的record的index
  val index = HprofInMemoryIndex.createReadingHprof(hprof, proguardMapping, indexedGcRootTypes)
  //HprofHeapGraph是HeapGraph的实现类
  return HprofHeapGraph(hprof, index)
}

HprofInMemoryIndex.createReadingHprof核心逻辑:读取hprof文件,将不同内容封装为不同的record,然后将record转为索引化的index封装,之后查找内容可以通过index去索引到。

HprofReader.readHprofRecords() 封装record

  • LoadClassRecord
  • InstanceSkipContentRecord
  • ObjectArraySkipContentRecord
  • PrimitiveArraySkipContentRecord

HprofInMemoryIndex.onHprofRecord() 封装index:

  • classIndex
  • instanceIndex
  • objectArrayIndex
  • primitiveArrayIndex
class HprofHeapGraph internal constructor(
   private val hprof: Hprof,
   private val index: HprofInMemoryIndex
) : HeapGraph {
...
  override val gcRoots: List
   get() = index.gcRoots()
  override val objects: Sequence
   get() {
     return index.indexedObjectSequence().map {wrapIndexedObject(it.second, it.first)}
   }
  override val classes: Sequence
   get() {
     return index.indexedClassSequence().map {val objectId = it.first
           val indexedObject = it.second
           HeapClass(this, indexedObject, objectId)
         }
   }
  override val instances: Sequence
   get() {
     return index.indexedInstanceSequence().map {val objectId = it.first
           val indexedObject = it.second
           val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.classId)
           HeapInstance(this, indexedObject, objectId, isPrimitiveWrapper)
         }
   }

  override val objectArrays: Sequence
   get() = index.indexedObjectArraySequence().map {val objectId = it.first
     val indexedObject = it.second
     val isPrimitiveWrapper = index.primitiveWrapperTypes.contains(indexedObject.arrayClassId)
     HeapObjectArray(this, indexedObject, objectId, isPrimitiveWrapper)
   }

  override val primitiveArrays: Sequence
   get() = index.indexedPrimitiveArraySequence().map {val objectId = it.first
     val indexedObject = it.second
     HeapPrimitiveArray(this, indexedObject, objectId)
   }

Hprof 经过层层转换最终封装为HprofHeapGraph。

简而言之,这部分功能主要是将Hrpof文件按照扫描的格式解析为结构化的索引关系图,索引化后的内容封装为HprofHeapGraph,由它去通过对应的起始索引去定位每类数据。没有细抠这部分的实现细节,实现这个功能的库之前是squere的HAHA,现在改为shark,但是提供的功能大同小异。

4.3.2 initLeakDetectors() 与findLeaks()

初始化泄漏检测者:

private void initLeakDetectors() {
  addDetector(new ActivityLeakDetector(heapGraph));
  addDetector(new FragmentLeakDetector(heapGraph));
  addDetector(new BitmapLeakDetector(heapGraph));
  addDetector(new NativeAllocationRegistryLeakDetector(heapGraph));
  addDetector(new WindowLeakDetector(heapGraph));
  ClassHierarchyFetcher.initComputeGenerations(computeGenerations);
  leakReasonTable = new HashMap<>();
}

初始化各类型泄漏的检测者,主要包含Activity、Fragment、Bitmap+NativeAllocationRegistry、window的泄漏检测。

其次是梳理以上几类对象类继承关系串,检测覆盖到他们的子类。

public void findLeaks() {
  KLog.i(TAG, "start find leaks");
  //从HprofHeapGraph中获取所有instance
  Sequence instances = heapGraph.getInstances();
  Iterator instanceIterator = instances.iterator();
  while (instanceIterator.hasNext()) {
    HeapObject.HeapInstance instance = instanceIterator.next();
   if (instance.isPrimitiveWrapper()) {
      continue;
   }
    ClassHierarchyFetcher.process(instance.getInstanceClassId(),
       instance.getInstanceClass().getClassHierarchy());
   for (LeakDetector leakDetector : leakDetectors) {
      //是检测对象的子类&满足对应泄漏条件
      if (leakDetector.isSubClass(instance.getInstanceClassId())
          && leakDetector.isLeak(instance)) {
        ClassCounter classCounter = leakDetector.instanceCount();
       if (classCounter.leakInstancesCount <=
            SAME_CLASS_LEAK_OBJECT_GC_PATH_THRESHOLD) {
          leakingObjects.add(instance.getObjectId());
         leakReasonTable.put(instance.getObjectId(), leakDetector.leakReason());
       }
      }
    }
  }

  //关注class和对应instance数量,加入json
  HeapAnalyzeReporter.addClassInfo(leakDetectors);
  findPrimitiveArrayLeaks();
  findObjectArrayLeaks();
}

这里重点看看各类型对象是如何判断泄漏的:

ActivityLeakDetector:

private static final String ACTIVITY_CLASS_NAME = "android.app.Activity";
private static final String FINISHED_FIELD_NAME = "mFinished";
private static final String DESTROYED_FIELD_NAME = "mDestroyed";
public boolean isLeak(HeapObject.HeapInstance instance) {
  activityCounter.instancesCount++;
  HeapField destroyField = instance.get(ACTIVITY_CLASS_NAME, DESTROYED_FIELD_NAME);
  HeapField finishedField = instance.get(ACTIVITY_CLASS_NAME, FINISHED_FIELD_NAME);
  assert destroyField != null;
  assert finishedField != null;
  boolean abnormal = destroyField.getValue().getAsBoolean() == null
     || finishedField.getValue().getAsBoolean() == null;
  if (abnormal) {
   return false;
  }
  boolean leak = destroyField.getValue().getAsBoolean()
      || finishedField.getValue().getAsBoolean();
  if (leak) {
    activityCounter.leakInstancesCount++;
  }
  return leak;
}

mDestroyed和mFinish字段为true,但是实例还存在的Activity是疑似泄漏对象。

FragmentLeakDetector:

  private static final String NATIVE_FRAGMENT_CLASS_NAME = "android.app.Fragment";
// native android Fragment, deprecated as of API 28.
  private static final String SUPPORT_FRAGMENT_CLASS_NAME = "android.support.v4.app.Fragment";
// pre-androidx, support library version of the Fragment implementation.
  private static final String ANDROIDX_FRAGMENT_CLASS_NAME = "androidx.fragment.app.Fragment";
// androidx version of the Fragment implementation
private static final String FRAGMENT_MANAGER_FIELD_NAME = "mFragmentManager”;
private static final String FRAGMENT_MCALLED_FIELD_NAME = "mCalled”;//Used to verify that subclasses call through to super class.

public FragmentLeakDetector(HeapGraph heapGraph) {
  HeapObject.HeapClass fragmentHeapClass =
      heapGraph.findClassByName(ANDROIDX_FRAGMENT_CLASS_NAME);
  fragmentClassName = ANDROIDX_FRAGMENT_CLASS_NAME;
  if (fragmentHeapClass == null) {
    fragmentHeapClass = heapGraph.findClassByName(NATIVE_FRAGMENT_CLASS_NAME);
   fragmentClassName = NATIVE_FRAGMENT_CLASS_NAME;
  }

  if (fragmentHeapClass == null) {
    fragmentHeapClass = heapGraph.findClassByName(SUPPORT_FRAGMENT_CLASS_NAME);
   fragmentClassName = SUPPORT_FRAGMENT_CLASS_NAME;
  }

  assert fragmentHeapClass != null;
  fragmentClassId = fragmentHeapClass.getObjectId();
  fragmentCounter = new ClassCounter();
}

public boolean isLeak(HeapObject.HeapInstance instance) {
  if (VERBOSE_LOG) {
    KLog.i(TAG, "run isLeak");
  }
  fragmentCounter.instancesCount++;
  boolean leak = false;
  HeapField fragmentManager = instance.get(fragmentClassName, FRAGMENT_MANAGER_FIELD_NAME);
  if (fragmentManager != null && fragmentManager.getValue().getAsObject() == null) {
    HeapField mCalledField = instance.get(fragmentClassName, FRAGMENT_MCALLED_FIELD_NAME);
   boolean abnormal = mCalledField == null || mCalledField.getValue().getAsBoolean() == null;
   if (abnormal) {
      KLog.e(TAG, "ABNORMAL mCalledField is null");
     return false;
   }
    leak = mCalledField.getValue().getAsBoolean();
   if (leak) {
      if (VERBOSE_LOG) {
        KLog.e(TAG, "fragment leak : " + instance.getInstanceClassName());
     }
      fragmentCounter.leakInstancesCount++;
   }
  }
  return leak;
}

这里分了三种fragment:

  • android.app.Fragment
  • android.support.v4.app.Fragment
  • androidx.fragment.app.Fragment

对应的FragmentManager实例为null(这表示fragment被remove了)且满足对应的mCalled为true,即非perform状态,而是对应生命周期被回调状态(onDestroy),但是实例还存在的Fragment是疑似泄漏对象。

BitmapLeakDetector

private static final String BITMAP_CLASS_NAME = "android.graphics.Bitmap”;
public boolean isLeak(HeapObject.HeapInstance instance) {
  if (VERBOSE_LOG) {
    KLog.i(TAG, "run isLeak");
  }
  bitmapCounter.instancesCount++;
  HeapField fieldWidth = instance.get(BITMAP_CLASS_NAME, "mWidth");
  HeapField fieldHeight = instance.get(BITMAP_CLASS_NAME, "mHeight");
  assert fieldHeight != null;
  assert fieldWidth != null;
  boolean abnormal = fieldHeight.getValue().getAsInt() == null
     || fieldWidth.getValue().getAsInt() == null;
  if (abnormal) {
    KLog.e(TAG, "ABNORMAL fieldWidth or fieldHeight is null");
   return false;
  }

  int width = fieldWidth.getValue().getAsInt();
  int height = fieldHeight.getValue().getAsInt();
  boolean suspicionLeak = width * height >= KConstants.BitmapThreshold.DEFAULT_BIG_BITMAP;
  if (suspicionLeak) {
    KLog.e(TAG, "bitmap leak : " + instance.getInstanceClassName() + " " +
        "width:" + width + " height:" + height);
   bitmapCounter.leakInstancesCount++;
  }
  return suspicionLeak;
}

这里是针对Bitmap size做判断,超过768*1366这个size的认为泄漏。

另外,NativeAllocationRegistryLeakDetector和WindowLeakDetector两类还没做具体泄漏判断规则,不参与对象泄漏检测,只是做了统计。

总结:
整体看下来,KOOM有两个值得借鉴的点:
1.触发内存泄漏检测,常规是watcher activity/fragment的onDestroy,而KOOM是定期轮询查看当前内存是否到达阀值;
2.dump hprof,常规是对应进程dump,而KOOM是fork进程dump。

参考:
快手自研OOM解决方案KOOM今日宣布开源

你可能感兴趣的:(KOOM V1.0.5 框架解析)