iOS-内存管理

前言

说到iOS的内存管理,大致应该分为以下几个方面:

  1. NSTaggedPointer 类型
  2. alloc,retain,release,dealloc,retainCount 原理
  3. @autoreleasepool 原理

alloc可以移步我的这篇文章:iOS-OC对象原理_alloc&init
@autoreleasepool移步:iOS-OC底层-AutoReleasePool分析

TaggedPointer

TaggedPointer一直都没找到一个比较官方的定义,俗称小对象类型。它是一种特殊的类型,特点就是它的指针是值+指针。这是苹果做的一层优化处理,小对象类型的数据存储在常量区,所以它的释放是由系统来处理的。比如在retainrelease中,都对这种类型做了排除处理:

if (isTaggedPointer()) return (uintptr_t)this;

在看下面的代码:

- (void)viewDidLoad
{
    [super viewDidLoad];
    NSString *str0 = [NSString stringWithFormat:@"z"];
    NSString *str1 = [NSString stringWithFormat:@"zezefamily.com我是zezefaily"];
}

通过LLDB,输出一下str0str1

(lldb) p str0
(NSTaggedPointerString *) $2 = 0xac6d1e2074072a9f @"z"
(lldb) p str1
(__NSCFString *) $3 = 0x0000600001a24230 @"zezefamily.com我是zezefaily"
(lldb) 

这里可以看到一个非常明显的不同是str0NSTaggedPointerString *类型,而str1__NSCFString *类型。这就是苹果的优化处理,当对象存在的内容比较小时,就被优化为一个TaggedPointer类型,以更少的字节数来保存,同时指针也做了混淆处理,来保证值的安全。
我们可以通过源码中的混淆编解码函数,将混淆后的指针还原回来。

extern uintptr_t objc_debug_taggedpointer_obfuscator;
uintptr_t
_objc_decodeTaggedPointer_(id ptr)
{
    return (uintptr_t)ptr ^ objc_debug_taggedpointer_obfuscator;
}

通过指针还原输出如下:

(lldb) p/x str0
(NSTaggedPointerString *) $4 = 0xab158b5ee1846519 @"z"
(lldb) p/x _objc_decodeTaggedPointer_(str0)
(uintptr_t) $5 = 0xa0000000000007a1

0xa0000000000007a1指针,解析出0x7a(ascii码:122)是这个z,0xa是类型信息,即1 010->1标识为是TaggedPointer类型,010->2, 对应关系如下:

typedef uint16_t objc_tag_index_t;
enum
#endif
{
    // 60-bit payloads
    OBJC_TAG_NSAtom            = 0, 
    OBJC_TAG_1                 = 1, 
    OBJC_TAG_NSString          = 2, 
    OBJC_TAG_NSNumber          = 3, 
    OBJC_TAG_NSIndexPath       = 4, 
    OBJC_TAG_NSManagedObjectID = 5, 
    OBJC_TAG_NSDate            = 6,

    // 60-bit reserved
    OBJC_TAG_RESERVED_7        = 7, 

    // 52-bit payloads
    OBJC_TAG_Photos_1          = 8,
    OBJC_TAG_Photos_2          = 9,
    OBJC_TAG_Photos_3          = 10,
    OBJC_TAG_Photos_4          = 11,
    OBJC_TAG_XPC_1             = 12,
    OBJC_TAG_XPC_2             = 13,
    OBJC_TAG_XPC_3             = 14,
    OBJC_TAG_XPC_4             = 15,
    OBJC_TAG_NSColor           = 16,
    OBJC_TAG_UIColor           = 17,
    OBJC_TAG_CGColor           = 18,
    OBJC_TAG_NSIndexSet        = 19,

    OBJC_TAG_First60BitPayload = 0, 
    OBJC_TAG_Last60BitPayload  = 6, 
    OBJC_TAG_First52BitPayload = 8, 
    OBJC_TAG_Last52BitPayload  = 263, 

    OBJC_TAG_RESERVED_264      = 264
};

说明:笔者对这个地址相关的东西比较懵逼,说不清楚。这里需要知道的就是有TaggedPointer类型的存在,并且当被标记为该类型的对象会存入常量区,其内存管理是由系统决定的。

retain

在探索retain之前我们需要先回顾下isa_t这个联合体iOS-OC对象原理_NONPOINTER_ISA,我们知道在isa_t中包含一个extra_rchas_sidetable_rc,其中extra_rc表示该对象的引用计数值,而has_sidetable_rc表示是否引用了散列表,当extra_rc空间存储的值超出范围时,会使用sidetable(散列表进行存储),即标记为has_sidetable_rc = true。所以这里先看下SideTable的数据结构:

struct SideTable {
    spinlock_t slock;  //锁
    RefcountMap refcnts;  //引用计数表
    weak_table_t weak_table;  //弱引用表
    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }
    ~SideTable() {
        _objc_fatal("Do not delete SideTable.");
    }
    void lock() { slock.lock(); }
    void unlock() { slock.unlock(); }
    void forceReset() { slock.forceReset(); }
    // Address-ordered lock discipline for a pair of side tables.
    template
    static void lockTwo(SideTable *lock1, SideTable *lock2);
    template
    static void unlockTwo(SideTable *lock1, SideTable *lock2);
};

这里可以看到,在SideTable散列表中包含了refcnts引用计数表和weak_table弱引用表。这里要注意的是:不是每个对象对应一个散列表,而是一个散列表中对应多个对象,在iOS真机下,默认创建8个SideTable。 为什么不直接全部存放在一个SideTable里呐?这里主要是为了安全和效率,如果存在一个SideTable,每次访问数据时,会将全部数据暴露出来,有安全隐患;同时查询的数据量庞大,导致效率变慢。
整个SideTable数据结构图如下:

SideTable数据结构关系表(仅供参考)

我们知道了这样一个结构之后,再开始我们的retain探索:
首先说retain,本质就是引用计数加1,即isa.extra_rc+1,具体是怎么操作的呐,先看一下retain的源码:

- (id)retain {
    return _objc_rootRetain(self);
}
_objc_rootRetain(id obj)
{
    ASSERT(obj);
    return obj->rootRetain();
}
ALWAYS_INLINE id 
objc_object::rootRetain()
{
    return rootRetain(false, false);
}
ALWAYS_INLINE id 
objc_object::rootRetain(bool tryRetain, bool handleOverflow)
{
    if (isTaggedPointer()) return (id)this;

    bool sideTableLocked = false;
    bool transcribeToSideTable = false;
    //extra_rc
    //
    isa_t oldisa;
    isa_t newisa;

    do {
        transcribeToSideTable = false;
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        //判断是否为nonpointer_isa
        if (slowpath(!newisa.nonpointer)) { //不是nonpointer_isa 直接操作散列表
            ClearExclusive(&isa.bits);
            if (rawISA()->isMetaClass()) return (id)this;
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            if (tryRetain) return sidetable_tryRetain() ? (id)this : nil;
            else return sidetable_retain();
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        // 是否正在析构中..
        if (slowpath(tryRetain && newisa.deallocating)) {
            ClearExclusive(&isa.bits);
            if (!tryRetain && sideTableLocked) sidetable_unlock();
            return nil;
        }
        //正常情况
        uintptr_t carry;
        newisa.bits = addc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc++
        
        if (slowpath(carry)) {
            // newisa.extra_rc++ overflowed
            if (!handleOverflow) {
                ClearExclusive(&isa.bits);
                return rootRetain_overflow(tryRetain);
            }
            //当isa.extra_rc 满了,将isa.has_sidetable_rc 标记为true,
            //isa.extra_rc保留数据的一半RC_HALF,另一半存入散列表中sidetable->refconts->this
            // Leave half of the retain counts inline and 
            // prepare to copy the other half to the side table.
            if (!tryRetain && !sideTableLocked) sidetable_lock();
            sideTableLocked = true;
            transcribeToSideTable = true;
            newisa.extra_rc = RC_HALF;
            newisa.has_sidetable_rc = true;
        }
    } while (slowpath(!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)));

    if (slowpath(transcribeToSideTable)) {
        // Copy the other half of the retain counts to the side table.
        sidetable_addExtraRC_nolock(RC_HALF);
    }

    if (slowpath(!tryRetain && sideTableLocked)) sidetable_unlock();
    return (id)this;
}

最终retain会来到objc_object::rootRetain()函数,这里可以看到一段核心的代码是在一个do while循环中。大致分为3个部分:

  1. 判断当前对象是否为nonpointer_isa类型,如果不是,直接操作散列表
id
objc_object::sidetable_retain()
{
#if SUPPORT_NONPOINTER_ISA
    ASSERT(!isa.nonpointer);
#endif
    SideTable& table = SideTables()[this];
    
    table.lock();
    size_t& refcntStorage = table.refcnts[this];
    if (! (refcntStorage & SIDE_TABLE_RC_PINNED)) {
        refcntStorage += SIDE_TABLE_RC_ONE;
    }
    table.unlock();

    return (id)this;
}

根据this找到对应的SideTable,并通过table.refcnts[this]找到当前对象的引用计数值refcntStorage,并进行refcntStorage += SIDE_TABLE_RC_ONE;并返回。

  1. 判断当前对象是否正在析构
    即判断newisa.deallocating是否为true,如果正在析构(正在dealloc),直接返回nil。

  2. 正常的引用计数情况
    如果以上2个if都不满足,也就是开始正常的操作流程。首先,通过addc(newisa.bits, RC_ONE, 0, &carry)isa.extra_rc++,这里用一个carry来标记extra_rc是否已经满了,如果数据溢出,将isa.extra_rc的值设置为原来的一半,并将has_sidetable_rc标识设置为true,并将剩下的一半数据,通过
    sidetable_addExtraRC_nolock(RC_HALF);存入散列表中:

bool 
objc_object::sidetable_addExtraRC_nolock(size_t delta_rc)
{
    ASSERT(isa.nonpointer);
    SideTable& table = SideTables()[this];

    size_t& refcntStorage = table.refcnts[this];
    size_t oldRefcnt = refcntStorage;
    // isa-side bits should not be set here
    ASSERT((oldRefcnt & SIDE_TABLE_DEALLOCATING) == 0);
    ASSERT((oldRefcnt & SIDE_TABLE_WEAKLY_REFERENCED) == 0);

    //pinned
    if (oldRefcnt & SIDE_TABLE_RC_PINNED) return true;

    uintptr_t carry;
    size_t newRefcnt = 
        addc(oldRefcnt, delta_rc << SIDE_TABLE_RC_SHIFT, 0, &carry);
    if (carry) {
        refcntStorage =
            SIDE_TABLE_RC_PINNED | (oldRefcnt & SIDE_TABLE_FLAG_MASK);
        return true;
    }
    else {
        refcntStorage = newRefcnt;
        return false;
    }
}

这里将extra_rc设置为原来的一半(RC_HALF),同时将另一半存入SideTable,这里其实也是一种优化方式,当要溢出时,给extra_rc释放容量,将释放出的内容存入Sidetable,下次retain直接通过extra_rc++,减少了对SideTable的频繁操作,通过直接操作extra_rc++效率更高。

这就是整个retain的流程了,首先先判断当前对象是否为nopointer类型,如果不是,直接操作SideTable散列表,存储引用计数,并return;判断当前对象是否正在析构,如果正在析构,则直接return nil;否则进入正常的引用计数处理,即isa.extra_rc++, 判断当前extra_rc是否溢出,如果没有直接return; 如果发生溢出,则将extra_rc赋值为原来的一半,并将has_sideTable_rc标记为true,将另一半数据存入SideTable散列表中。

release

上面已经熟悉了retain的流程,再看release就比较容易了,逆向思维:

ALWAYS_INLINE bool 
objc_object::rootRelease(bool performDealloc, bool handleUnderflow)
{
    if (isTaggedPointer()) return false;

    bool sideTableLocked = false;

    isa_t oldisa;
    isa_t newisa;

 retry:
    do {
        oldisa = LoadExclusive(&isa.bits);
        newisa = oldisa;
        if (slowpath(!newisa.nonpointer)) {
            ClearExclusive(&isa.bits);
            if (rawISA()->isMetaClass()) return false;
            if (sideTableLocked) sidetable_unlock();
            return sidetable_release(performDealloc);
        }
        // don't check newisa.fast_rr; we already called any RR overrides
        uintptr_t carry;
        newisa.bits = subc(newisa.bits, RC_ONE, 0, &carry);  // extra_rc--
        if (slowpath(carry)) {
            // don't ClearExclusive()
            goto underflow;
        }
    } while (slowpath(!StoreReleaseExclusive(&isa.bits, 
                                             oldisa.bits, newisa.bits)));

    if (slowpath(sideTableLocked)) sidetable_unlock();
    return false;

 underflow:
    // newisa.extra_rc-- underflowed: borrow from side table or deallocate

    // abandon newisa to undo the decrement
    newisa = oldisa;

    if (slowpath(newisa.has_sidetable_rc)) {
        if (!handleUnderflow) {
            ClearExclusive(&isa.bits);
            return rootRelease_underflow(performDealloc);
        }

        // Transfer retain count from side table to inline storage.

        if (!sideTableLocked) {
            ClearExclusive(&isa.bits);
            sidetable_lock();
            sideTableLocked = true;
            // Need to start over to avoid a race against 
            // the nonpointer -> raw pointer transition.
            goto retry;
        }

        // Try to remove some retain counts from the side table.        
        size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF);

        // To avoid races, has_sidetable_rc must remain set 
        // even if the side table count is now zero.

        if (borrowed > 0) {
            // Side table retain count decreased.
            // Try to add them to the inline count.
            newisa.extra_rc = borrowed - 1;  // redo the original decrement too
            bool stored = StoreReleaseExclusive(&isa.bits, 
                                                oldisa.bits, newisa.bits);
            if (!stored) {
                // Inline update failed. 
                // Try it again right now. This prevents livelock on LL/SC 
                // architectures where the side table access itself may have 
                // dropped the reservation.
                isa_t oldisa2 = LoadExclusive(&isa.bits);
                isa_t newisa2 = oldisa2;
                if (newisa2.nonpointer) {
                    uintptr_t overflow;
                    newisa2.bits = 
                        addc(newisa2.bits, RC_ONE * (borrowed-1), 0, &overflow);
                    if (!overflow) {
                        stored = StoreReleaseExclusive(&isa.bits, oldisa2.bits, 
                                                       newisa2.bits);
                    }
                }
            }

            if (!stored) {
                // Inline update failed.
                // Put the retains back in the side table.
                sidetable_addExtraRC_nolock(borrowed);
                goto retry;
            }

            // Decrement successful after borrowing from side table.
            // This decrement cannot be the deallocating decrement - the side 
            // table lock and has_sidetable_rc bit ensure that if everyone 
            // else tried to -release while we worked, the last one would block.
            sidetable_unlock();
            return false;
        }
        else {
            // Side table is empty after all. Fall-through to the dealloc path.
        }
    }

    // Really deallocate.

    if (slowpath(newisa.deallocating)) {
        ClearExclusive(&isa.bits);
        if (sideTableLocked) sidetable_unlock();
        return overrelease_error();
        // does not actually return
    }
    newisa.deallocating = true;
    if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;

    if (slowpath(sideTableLocked)) sidetable_unlock();

    __c11_atomic_thread_fence(__ATOMIC_ACQUIRE);

    if (performDealloc) {
        ((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));
    }
    return true;
}

这里还是跟retain差不多,先是判断当前对象是否为nonpointer类型,如果是,直接操作SideTable操作引用计数减减:

uintptr_t
objc_object::sidetable_release(bool performDealloc)
{
#if SUPPORT_NONPOINTER_ISA
    ASSERT(!isa.nonpointer);
#endif
    SideTable& table = SideTables()[this];

    bool do_dealloc = false;

    table.lock();
    auto it = table.refcnts.try_emplace(this, SIDE_TABLE_DEALLOCATING);
    auto &refcnt = it.first->second;
    if (it.second) {
        do_dealloc = true;
    } else if (refcnt < SIDE_TABLE_DEALLOCATING) {
        // SIDE_TABLE_WEAKLY_REFERENCED may be set. Don't change it.
        do_dealloc = true;
        refcnt |= SIDE_TABLE_DEALLOCATING;
    } else if (! (refcnt & SIDE_TABLE_RC_PINNED)) {
        refcnt -= SIDE_TABLE_RC_ONE;
    }
    table.unlock();
    if (do_dealloc  &&  performDealloc) {
        ((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));
    }
    return do_dealloc;
}

如果是nonpointer类型,直接执行extra_rc--,之后通过carry判断extra_rc是否已经减没了,如果已经没值了,跳转到underflow处理。在underflow中,
判断是否引用散列表计数newisa.has_sidetable_rc?,如果成立,通过size_t borrowed = sidetable_subExtraRC_nolock(RC_HALF),取出对应的计数值,判断borrowed是否大于0,如果大于0,将borrowed-1赋值给isa.extra_rc;如果不大于0,什么都不做。如果最终的引用计数=0 ,则会通过objc_msgSend()触发dealloc

((void(*)(objc_object *, SEL))objc_msgSend)(this, @selector(dealloc));

紧接着,看dealloc

dealloc

dealloc最终也会来到rootDealloc

inline void
objc_object::rootDealloc()
{
    if (isTaggedPointer()) return;  // fixme necessary?

    if (fastpath(isa.nonpointer  &&  
                 !isa.weakly_referenced  &&  
                 !isa.has_assoc  &&  
                 !isa.has_cxx_dtor  &&  
                 !isa.has_sidetable_rc))
    {
        assert(!sidetable_present());
        free(this);
    } 
    else {
        object_dispose((id)this);
    }
}

首先判断当前对象是否为nonpointer类型,且没有弱引用,没有关联对象,没有C++函数,没有sidetable引用,如果成立就直接free(this);否则object_dispose((id)this);

id 
object_dispose(id obj)
{
    if (!obj) return nil;
    objc_destructInstance(obj);    
    free(obj);
    return nil;
}
//释放C++相关, 移除关联对象
void *objc_destructInstance(id obj) 
{
    if (obj) {
        // Read all of the flags at once for performance.
        bool cxx = obj->hasCxxDtor();
        bool assoc = obj->hasAssociatedObjects();

        // This order is important.
        if (cxx) object_cxxDestruct(obj);
        if (assoc) _object_remove_assocations(obj);
        obj->clearDeallocating();
    }
    return obj;
}
inline void 
objc_object::clearDeallocating()
{
    if (slowpath(!isa.nonpointer)) {
        // Slow path for raw pointer isa.
        sidetable_clearDeallocating();
    }
    else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {
        // Slow path for non-pointer isa with weak refs and/or side table data.
        clearDeallocating_slow();
    }
    assert(!sidetable_present());
}
//清空弱引用表和引用计数表中的数据
NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
    ASSERT(isa.nonpointer  &&  (isa.weakly_referenced || isa.has_sidetable_rc));

    SideTable& table = SideTables()[this];
    table.lock();
    if (isa.weakly_referenced) {
        weak_clear_no_lock(&table.weak_table, (id)this);
    }
    if (isa.has_sidetable_rc) {
        table.refcnts.erase(this);
    }
    table.unlock();
}

这里就不细说每一个函数的内容了,总之就是释放C++相关内容,移除关联对象,清空弱引用表对应的数据,清空引用计数表中对应的数据,最后执行free(this)

retainCount

先来一段代码:

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        // insert code here...
        NSObject *obj = [NSObject alloc];
        NSLog(@"retainCount == %ld",CFGetRetainCount((__bridge CFTypeRef)(obj)));
        NSLog(@"retainCount == %ld",CFGetRetainCount((__bridge CFTypeRef)(obj)));
        NSLog(@"retainCount == %ld",CFGetRetainCount((__bridge CFTypeRef)(obj)));
    }
    return 0;
}

上面的retainCount输出为多少? 答案为1,

[49975:21037772] retainCount == 1
[49975:21037772] retainCount == 1
[49975:21037772] retainCount == 1

这里只是创建对象,还没有被引用为什么就是1了呐?来看下retainCount源码:

inline uintptr_t 
objc_object::rootRetainCount()
{
    if (isTaggedPointer()) return (uintptr_t)this;
    sidetable_lock();
    isa_t bits = LoadExclusive(&isa.bits);
    ClearExclusive(&isa.bits);
    if (bits.nonpointer) {
        uintptr_t rc = 1 + bits.extra_rc;  // alloc 1 + 0 = 1;
        if (bits.has_sidetable_rc) {
            rc += sidetable_getExtraRC_nolock();
        }
        sidetable_unlock();
        return rc;
    }
    sidetable_unlock();
    return sidetable_retainCount();
}

这里可以看到,rc = 1 + bits.extra_rc,我们知道在alloc内部并没有对extra_rc做任何操作,所有这里的extra_rc = 0,最终rc = 1。这里也就说明,一个对象创建后,默认的引用计数为1。这里的1其实也是有意义的,当对象创建时,第一个引用该对象的其实就是这个作用域空间,只是这个1,并没有通过extra_rc来维护。

到此,alloc -> retain -> release -> dealloc一个闭环就形成了。

总结

关于内存管理,其实只要知道了isa.extra_rchas_sidetable_rc,再结合SideTable数据结构关系表,就可以很清楚的理解整个流程了。从头到尾梳理一遍,希望对你的工作和面试会有帮助。

你可能感兴趣的:(iOS-内存管理)