可视化神经网络训练过程,可视化神经网络热力图

Python中数据可视化经典库有哪些?

Python有很多经典的数据可视化库,比较经典的数据可视化库有下面几个。matplotlib是Python编程语言及其数值数学扩展包 NumPy 的可视化操作界面。

它利用通用的图形用户界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向应用程序嵌入式绘图提供了应用程序接口。

pyplot 是 matplotlib 的一个模块,它提供了一个类似 MATLAB 的接口。 matplotlib 被设计得用起来像 MATLAB,具有使用 Python 的能力。

优点:绘图质量高,可绘制出版物质量级别的图形。

代码够简单,易于理解和扩展,使绘图变得轻松,通过Matplotlib可以很轻松地画一些或简单或复杂的图形,几行代码即可生成直方图、条形图、散点图、密度图等等,最重要的是免费和开源。

pandasPandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

需要说明的是它不是“熊猫”,名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。

优点:是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。对于数据分析专业人士,它是数据分析及可视化的利器。

seabornSeaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。

它是基于matplotlib更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,应该把Seaborn视为matplotlib的补充,而不是替代物,它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。

优点:matplotlib高度封装,代码量少,图表漂亮。比起matplotlib具有更美观、更现代的调色板设计等优点。scikit-plot这是一个跟机器学习有效结合的绘图库。

想要深入学习的小伙伴参见其github仓库,这里不再赘述了。

优点:Scikit-Plot是由ReiichiroNakano创建的用在机器学习的可视化工具,能最快速简洁的画出用Matplotlib要写很多行语句才能画出的图。

关键是对于机器学习相关可视化处理,该库有较好的支持。Networkxnetworkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法。

图是由顶点、边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系。顶点和边也可以拥有更多的属性,以存储更多的信息。

优点:用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。上面是我的回答,希望对您有所帮助!

谷歌人工智能写作项目:神经网络伪原创

Python中除了matplotlib外还有哪些数据可视化的库

数据可视化是展示数据、理解数据的有效手段,常用的Python数据可视化库如下:1.Matplotlib:第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂写作猫

2.Seaborn:利用Matplotlib,用简洁的代码来制作好看的图表,与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。

3.ggplot:基于R的一个作图库的ggplot2,同时利用了源于《图像语法》中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。

4.Bokeh:与ggplot很相似,但与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。

图表可以输出为JSON对象、HTML文档或者可交互的网络应用。

5.Plotly:可以通过Python notebook使用,与bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。

6.pygal:与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。

与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。

7.geoplotlib:用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图等,必须安装Pyglet方可使用。

8.missingno:用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。

Python中数据可视化的两个库!

1. Matplotlib:是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代的商业化程序语言MATLAB十分相似,具有很多强大且复杂的可视化功能;还包含了多种类型的API,可以采用多种方式绘制图标并对图标进行定制。

2. Seaborn:是基于Matplotlib进行高级封装的可视化库,支持交互式界面,使绘制图表功能变得简单,且图表的色彩更具吸引力。

3. ggplot:是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,采用叠加图层的形式绘制图形,比如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。

4. Boken:是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。

5. Pygal:是一个可缩放矢量图标库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。

6. Pyecharts:是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。

python可视化?

 

你可能感兴趣的:(神经网络,python,matplotlib)