- Go语言反射机制详解
半桶水专家
golang入门golang开发语言后端
Go语言中的反射(Reflection)是一种在运行时动态检查类型信息和操作对象的能力。通过反射,可以获取变量的类型、值、方法、结构体字段等信息,甚至动态调用函数或修改变量的值。Go的反射功能由标准库中的reflect包提供。反射的核心概念反射的核心围绕两个接口展开:reflect.Type:表示Go语言中的类型信息(如类型名称、方法、字段等)。reflect.Value:表示某个类型的实例的值信
- trae使用攻略
yzx991013
python开发语言服务器
一、核心技巧:构建高效写作工作流1.深度定制写作风格模板在.md文件定义包含写作风格、目标受众、格式要求的模板,如:风格:口语化表达,用表情符号,段落简洁;受众:互联网从业者、年轻群体;格式:标题含emoji,三级目录,关键术语加粗。模板保存至Templates文件夹,通过#include指令复用。2.多源草稿智能整合粘贴转录文本,用#clean去除冗余语气词并分段;以@引用其他文档内容,AI自动
- linux+docker安装常见中间件+shell学习笔记
芦屋花绘
linuxdocker中间件
初始设置下载虚拟机软件:选择适合的虚拟机软件(如VirtualBox或VMware)。下载操作系统ISO映像文件:选择并下载你想安装的Linux发行版(例如Ubuntu、CentOS等)的ISO文件。ISO映像文件:是包含了完整光盘内容的文件,包含引导记录、文件系统、数据文件和目录结构。导入ISO文件到虚拟机,并进行相关配置,如分配内存、硬盘空间等。了解基本linuxLinux常见目录及其用途Li
- 一切靠抢的带抢的都是非常赚钱的,比如抢号抢票抢购等
小黄人软件
经验分享
“带抢”的东西通常意味着供需极度不平衡,信息不对称,或者时间、资源有限,因此具备高利润空间。除了抢号之外,以下这些领域也符合这个特点:1.抢购类抢票:包括演唱会、热门球赛、春运火车票、热门景区门票(如故宫)等,提供代抢服务或者软件。抢鞋、抢限量潮牌:如耐克SNKRS、Supreme等品牌的限量款,通过Bot代抢再高价转卖。抢游戏账号/虚拟物品:抢注游戏ID、游戏道具、限量皮肤,再转卖给需求方。抢新
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- Midscene.js自然语言驱动的网页自动化全指南
Hello.Reader
前端技术人工智能javascript自动化开发语言
一、概述网页自动化在数据抓取、UI测试和业务流程优化中发挥着重要作用。然而,传统工具如Selenium和Puppeteer要求用户具备编程技能,编写复杂的选择器和脚本维护成本高昂。Midscene.js通过自然语言接口革新了这一领域,用户只需描述任务(如“点击登录按钮”或“提取产品价格”),AI即可自动执行,大幅降低技术门槛。Midscene.js由web-infra-dev团队开发,开源于Git
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习deepseek机器学习算法
大语言模型微调和大语言模型应用的区别?关键要点微调大型语言模型(LLM)是调整预训练模型以适应特定任务或领域的过程,研究表明这能显著提升性能。大型语言模型应用是指将LLM用于实际问题解决或任务执行,如聊天机器人或文本生成。微调和应用的不同在于:微调是准备阶段,应用是最终使用;使用微调模型通常在特定领域表现更好,而预训练模型更适合通用任务。什么是微调大型语言模型?微调大型语言模型是指取一个已经预训练
- 计算机视觉总结
Trank-Lw
计算机视觉深度学习人工智能
以下是针对上述问题的详细解答,并结合代码示例进行说明:1.改进YOLOv5人脸检测模块,复杂光照场景准确率从98.2%提升至99.5%优化具体过程:光照补偿:在数据预处理阶段,采用自适应光照补偿算法,对图像进行实时增强,以减少光照变化对人脸检测的影响。数据增强:在训练数据中增加复杂光照场景下的样本,如强光、弱光、背光等,通过数据增强提高模型对不同光照条件的适应性。模型调整:对YOLOv5模型的网络
- 自动驾驶系统的车辆动力学建模:自行车模型与汽车模型的对比分析
赛卡
自动驾驶自动驾驶数学建模pythonnumpymatplotlib算法
在自动驾驶系统的车辆动力学建模中,自行车模型(BicycleModel)和更复杂的汽车模型(如双轨模型或多体动力学模型)各有其适用场景和优缺点。以下是两者的详细对比及选择原因解析:1.模型定义与核心差异特性自行车模型复杂汽车模型(如双轨模型)简化假设将四轮车辆简化为两轮(前轮转向,后轮驱动)考虑四轮独立运动、悬架系统、轮胎侧偏特性自由度2-3自由度(位置x,y,航向角θ)6+自由度(含横向、俯仰、
- Go 1.24 新特性一览
go资讯编程语言程序员
Go1.24震撼登场,带来显著性能提升与诸多新功能,如泛型类型别名、优化工具链及标准库增强。可借助os.Root实现安全文件系统操作,运用testing.B.Loop优化基准测试,利用runtime.AddCleanup完善资源管理,还有weak包优化内存、crypto包保障FIPS140-3合规。速升级,提升Go应用效率与安全!文章目录语言特性更新泛型类型别名(GenericTypeAliase
- Java对象的hashcode
阿黄学技术
Java基础java开发语言
在Java中,hashcode和equals方法是Object类的两个重要方法,它们在处理对象比较和哈希集合(如HashMap、HashSet)时起着关键作用。对于equals大部分Java程序员都不陌生,它通常是比较两个对象的内容(值)是否相等(==双等于比较对象的内存地址),如果是Object中的equals方法默认就是比较内存地址(在没有被重写的情况下和==一样)。hashCode方法返回对
- 景联文科技提供高质量文本标注服务,驱动AI技术发展
景联文科技
科技人工智能
文本标注是指在原始文本数据上添加标签的过程,这些标签可以用来指示特定的实体、关系、事件等信息,以帮助计算机理解和处理这些数据。文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强机器学习和深度学习模型对文本内容的理解能力。标注类型情感分析情感极性:确定文本表达的情感倾向,如正面、负面或中立。强度评估:衡量情感的强烈程度,从轻微到极端不等。命名实
- 景联文科技:以高质量数据标注推动人工智能领域创新与发展
景联文科技
科技人工智能数据标注
在当今这个由数据驱动的时代,高质量的数据标注对于推动机器学习、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。数据标注过程涉及对原始数据进行加工,通过标注特定对象的特征来生成能够被机器学习模型识别和使用的编码格式,从而使数据更具有意义和可解读性。数据标注的主要类型包括:图像标注:指在图片中标识出目标物体的位置、形状或类别等信息,如自动驾驶技术中的行人、车辆及交通标志的识别。文本
- Java中卫语句的设计思想
而为.
java服务器开发语言
卫语句(GuardClauses)是一种通过提前返回简化条件嵌套、提升代码可读性的编程技巧。其核心思想是优先处理异常或边界情况,让主逻辑保持扁平化。以下是deepseek做出的设计思想详解:核心设计原则FailFast(快速失败)在函数入口处立即检查非法参数或无效状态,若不符合条件则提前终止(如返回、抛异常),避免后续无效操作。减少嵌套层级用卫语句替换多层if-else嵌套,将代码从“箭头型”结构
- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- 编译QT5.15.2 qtwebengine模块以支持mp4
m0_74822999
qt开发语言
由于版权限制,Qt官方无法在其二进制包中提供某些解码器,这导致QtWebEngine无法支持一些常见的视频格式(如MP4)。为了解决这一问题,我们可以通过重新编译QtWebEngine来集成所需的解码器一、编译准备1.获取源码qtwebengine-everywhere-src-5.15.2.zip2.编译环境Python2.7.5:Python2.7.5Perl:StrawberryPerlfo
- 嵌入式系统的核心组成部分处理器、存储器、传感器和执行器
getapi
单片机嵌入式硬件信号处理
处理器、存储器、传感器和执行器是嵌入式系统的核心组成部分。它们共同协作,完成从数据采集到处理再到执行的完整流程。以下是对这些组件的详细解析:1.处理器(Processor)定义处理器是嵌入式系统的大脑,负责执行指令、处理数据和控制其他组件。主要功能执行程序代码。控制外设(如存储器、传感器、执行器)。处理数据输入和输出。分类微控制器(MCU)集成了处理器核心、存储器和外设的单芯片解决方案。适合低成本
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- 软件架构设计关键点:平衡高可用、性能、扩展性及成本的系统化实践
yinhezhanshen
程序人生系统架构
在数字化转型的浪潮中,软件系统已成为企业运营的核心支撑。从电商平台的秒杀活动到金融系统的实时交易,从物联网设备的百万级连接到政务服务的全天候响应,软件架构的设计质量直接决定了系统能否在复杂环境中稳定运行。本文将从高可用性、高性能、可扩展性、安全性、成本控制、规模承载和弹性伸缩七个维度,剖析现代软件架构设计的核心要点。一、高可用性:构建业务连续性的基石冗余设计:采用主从复制、多活数据中心架构(如
- 探索AI模型的巅峰之战:ChatGPT、DeepSeek与Grok 3,谁才是最强?
温暖阳光阿斌
人工智能chatgpt
近年来,人工智能领域正处于一场高速迭代的革命中。大型语言模型(LLMs)如ChatGPT、DeepSeek和Grok3纷纷亮相,各展所长,为人们带来了前所未有的体验。在这场"谁是最强"的竞争中,每一方都展现出了令人惊叹的能力和独特的优势。然而,这些模型之间的差异和特点,究竟是什么?它们各自的优势在哪里?又有哪些隐藏的短板?本文将带您深入了解这三位AI巨头的亮点与争议,共同探讨它们在AI领域的位置,
- 鸿蒙系统--搭建Ubuntu环境
ice_junjun
ubuntulinuxbash
搭建Ubuntu环境在嵌入式开发中,很多开发者习惯于使用Windows进行代码的编辑,比如使用Windows的VisualStudioCode进行OpenHarmony代码的开发。但当前阶段,大部分的开发板源码还不支持在Windows环境下进行编译,如Hi3861、Hi3516系列开发板。因此,建议使用Ubuntu的编译环境对源码进行编译。在以上的设备开发场景中,可以搭建一套Windows+Ubu
- 【004安卓开发方案调研】之Ionic+Vue+Capacitor开发安卓
ThinkPet
移动app开发androidionicCapacitorVue
基于Ionic+Vue+CapacitorPlugins的国内安卓开发生态和技术现状,结合跨平台框架特性与国内实际环境,以下是综合分析:一、技术成熟度评估1.核心优势跨平台开发效率Ionic提供预制的UI组件库(如卡片、列表、表单),结合Vue的响应式数据绑定,可快速构建80%以上的基础功能界面,开发效率比原生开发提升约40%。典型场景:企业内部工具App、电商商品详情页、新闻资讯类应用。Capa
- 【001安卓开发方案调研】之Java+Gradle+XML 原生安卓开发
ThinkPet
移动app开发androidjavaxml
基于2025年国内安卓开发领域的最新动态,结合Java+Gradle+XML技术组合的生态发展,以下是综合分析:一、技术成熟度评估1.核心架构稳定性Java语言基础作为安卓开发官方支持语言,Java在国内拥有超过15年的技术积累,字节码编译机制与安卓ART虚拟机的深度适配,使其在内存管理、多线程处理等场景表现稳定。主流应用如微信、支付宝均保留Java核心模块。Gradle构建体系Gradle8.5
- Oracle OCP认证是否值得考?
博睿谷IT99_
数据库oracle开闭原则数据库
OracleOCP(OracleCertifiedProfessional)认证是数据库领域的传统权威认证,但随着云数据库和开源技术的崛起,其价值正面临分化。是否值得考取,需结合你的职业定位、行业需求及长期规划综合判断。以下是关键分析:一、什么情况下值得考?1.职业定位明确:扎根传统数据库领域适用人群:从事金融、电信、能源等传统行业的DBA(数据库管理员);需维护Oracle旧版本(如11g/12
- 知识图谱系列文章——文物知识图谱
weixin_43407382
知识图谱
文章介绍背景1、文物可以提供创意,如哥窑面饰的照相机2、目前文物数字化工作非常少,没有纳入设计元素3、文物知识图谱建成后具有很多好处¥方法一、本体构建1、明确领域和目的——文物知识图谱&设计创意2、领域信息采集与分析——文物信息,340件文物实例,3、定义文物本体概念和结构层次4、定义概念属性和属性约束5、本体编码(建模语言和工具)6、本体评估——Jena的内嵌推理机,基于描述的逻辑7、本体实
- Linux进程间通信:消息队列与msgget函数使用详解
无形小手
本文还有配套的精品资源,点击获取简介:本文深入介绍了Linux消息队列的创建和操作方法,包括msgget()、msgsnd()和msgrcv()三个核心函数。介绍了通过消息队列实现进程间通信的基础实验步骤和关键要点,如键值计算、消息发送和接收,以及进程间通信时常见的权限控制、消息顺序、类型匹配和同步问题。通过学习这些内容,开发者能够更好地理解和掌握如何在项目中实现高效的进程间通信。1.Linux消
- 阿里云+华为云双活架构:头部企业的云端生存法则
云上的阿七
阿里云华为云架构
如何在云端构建高可用、高可靠的业务架构,依然是企业IT决策者面临的挑战。面对单一云厂商可能带来的故障风险,越来越多的头部企业开始采用“阿里云+华为云”双活架构,以提升业务连续性,实现跨云容灾,打造更稳健的云端生存法则。什么是双活架构?双活架构(Active-ActiveArchitecture)指的是企业在两个云平台(如阿里云和华为云)上同时运行核心业务,实现数据同步和业务负载均衡。一旦某一云平台
- Linux信号处理详解:从基本概念到高级应用
chian-ocean
Linuxlinux信号处理运维
个人主页:chian-ocean文章专栏-Linux前言:在Linux系统中,信号(Signal)是操作系统用来通知进程发生某些事件的一种机制。信号是一种软件中断机制,可以被进程用来响应特定的事件,如终止进程、暂停进程、重新加载配置等。信号机制是Unix及其衍生系统的核心功能之一什么是信号生活中的信号也可以理解为一种通过特定方式传递信息、指令或警告的方式。在日常生活中,信号无处不在,帮助我们理解周
- 使用AI识别语音和B站视频并通过GPT生成思维导图
思维导图gpt-4
AI脑图除了对文本、网页链接和文件生成思维导图外,现在也支持了对语音和B站视频的内容识别,并自动生成思维导图。语音生成思维导图直接发送语音:对AI脑图公众号直接发送语音(如使用语音说厦门三天两夜的旅行攻略),AI脑图会自动识别语音内容然后根据内容要求生成思维导图上传语音文件:支持多种音频格式,上传完成后AI脑图会识别音频内容,然后提炼内容关键信息、结构化梳理,并生成思维导图,同时也可以下载识别好的
- 使用AI识别语音和B站视频并通过GPT生成思维导图
思维导图gpt-4
AI脑图除了对文本、网页链接和文件生成思维导图外,现在也支持了对语音和B站视频的内容识别,并自动生成思维导图。语音生成思维导图直接发送语音:对AI脑图公众号直接发送语音(如使用语音说厦门三天两夜的旅行攻略),AI脑图会自动识别语音内容然后根据内容要求生成思维导图上传语音文件:支持多种音频格式,上传完成后AI脑图会识别音频内容,然后提炼内容关键信息、结构化梳理,并生成思维导图,同时也可以下载识别好的
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理