- Dijkstra算法例题及解析
_gxd_
算法
最短路算法(2)——Dijkstra算法本章一共有三道例题。1.最短路2.TiltheCowsComeHome3.成语接龙1.最短路Description在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?FormatInput输入包括多组数据
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 技术解析麦萌短剧《月光下的你》:从「时间序列的对抗扰动」到「加密身份的收敛证明」
萌萌短剧
重构
《月光下的你》以十六年的时间跨度展开一场关于「数据污染」与「身份验证」的深度博弈,本文将用机器学习视角拆解这场跨越时空的模型纠偏实验。1.数据污染事件:十六年前的对抗攻击许芳菲(Agent_Xu)的遭遇可视为时间序列上的对抗样本注入:标签篡改攻击:许清清(Adversary_XuQing)通过伪造标签(Label_Tampering)将Agent_Xu与傅临州(Node_Fu)强行关联,触发道德约
- Python在股票数据分析中的应用有哪些?如何用Python获取股票数据并进行可视化
财云量化
python炒股自动化量化交易程序化交易pythonpython股票数据分析数据获取可视化股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- 蓝桥杯网络安全春秋赛 Crypto RSA
叁Three
蓝桥杯密码学
蓝桥杯网络安全春秋赛CryptoRSA题目某公司为了保护其重要数据,使用了RSA加密算法。该公司以同一个N为模数,为Alice和Bob分别生成了不同的公钥和与之相应的私钥。Alice和Bob都使用自己的公钥对同一条明文m进行加密,分别得到密文c1和c2。假设你是一名密码安全研究者,你已获取了N值、两个密文和公钥,能否使用RSA的相关知识还原出明文m呢?#!python3.9fromCrypto.U
- Python 数据分析实战:电商平台用户行为洞察与营销策略优化
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1用户行为随时间的变化2.4.2商品关联分析2.4.3用户购买转化率分析2.4.4用户价值分析(RFM模型)三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-时间戳处理3.3数据分析-商品关联分析3.4数据分析-用户购买转化率分析3.5数据分析-用户价值分析(RFM模型)四、可能改进的代
- 用Java爬虫轻松获取微店店铺所有商品信息
数据小爬虫@
java爬虫开发语言
在当今电商蓬勃发展的时代,微店作为一个轻量级且功能强大的电商平台,吸引了众多商家和消费者。无论是进行市场调研、数据分析,还是寻找热门商品,获取微店店铺的所有商品信息都是一项极具价值的任务。然而,手动浏览和整理这些信息显然是低效且容易出错的。幸运的是,通过编写Java爬虫程序,我们可以高效地完成这一任务。本文将详细介绍如何利用Java爬虫获取微店店铺的所有商品信息。一、为什么选择Java爬虫?Jav
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 基于内容分块(CDC)的重删算法详解:原理、实现与优化
这个懒人
算法
引言在数据爆炸式增长的时代,存储资源优化成为技术领域的重要课题。重复数据删除(Deduplication)技术通过消除冗余数据副本,可将存储需求降低90%以上。其中基于内容分块(Content-DefinedChunking,CDC)算法凭借其对数据局部修改的强适应性,成为企业级备份系统、云存储服务的核心技术。一、CDC算法核心原理1.1动态分块vs静态分块传统固定分块算法将数据按固定大小(如4K
- 算法-找到字符串中所有字母异位词
程序员南飞
算法数据结构开发语言java
力扣题目:438.找到字符串中所有字母异位词-力扣(LeetCode)题目描述:给定两个字符串s和p,找到s中所有p的异位词的子串,返回这些子串的起始索引。不考虑答案输出的顺序。示例1:输入:s="cbaebabacd",p="abc"输出:[0,6]解释:起始索引等于0的子串是"cba",它是"abc"的异位词。起始索引等于6的子串是"bac",它是"abc"的异位词。示例2:输入:s="aba
- 【面试经验】华为 AI软开 计算产品线(面经+时间线)
litterfinger
面试华为人工智能
一.岗位:AI软开二.时间线:投递08.09,机试08.28,测评08.29;面试均线上,一面09.12,二面09.27,三面09.29(本来是09.19线下二三面,但由于本人有事推迟)三.一面(50min)自我介绍简单介绍一下传统知识图谱建设和大模型对于知识的构建的差异和整体的趋势聊聊实习经历中的提示工程和sft具体的工作AI的一个发展历史流程和相关算法的引进知识图谱建设的总体流程回顾机试:老鼠
- 【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?
努力毕业的小土博^_^
AI算法题库人工智能计算机视觉算法深度学习神经网络目标检测
【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?【北上广深杭大厂AI算法面试题】计算机视觉篇…详解目标检测中的多尺度训练和测试?文章目录【北上广深杭大厂AI算法面试题】计算机视觉篇...详解目标检测中的多尺度训练和测试?前言多尺度训练核心思想:优点与注意点:多尺度测试核心思想:优点与注意点:综合作用参考示例总结欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上
- MVC/MVP/MVVM框架学习总结(二)
每次的天空
mvc学习java
上次已经了解到MVC的知识,现在是扩展实现MVP/MVVM的框架改进本身项目MVVM框架即Model-View-ViewModel框架,是一种软件架构设计模式,以下是具体介绍:核心组件Model(模型):代表应用程序的数据结构和业务逻辑,负责数据的存储、检索、验证和处理,定义业务规则和算法,是应用程序的数据核心。比如在一个电商应用中,商品数据、用户订单数据等的存储和相关逻辑处理都属于Model层。
- 【时间复杂度常见的计算】
xihongshi547
算法leetcode数据结构
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档时间复杂度的简单介绍前言一、时间复杂度是什么?二、时间复杂度的计算1.基本步骤2.常见的时间复杂度总结前言对于判断一段代码的好坏,取决于该代码运行的时间与占用的空间,也就是时间复杂度与空间复杂度,本章就先讲一下时间复杂度,主要包含常见的时间复杂度的计算。一、时间复杂度是什么?时间复杂度是衡量算法运行效率的一个重要指标,它表示随着输入规
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- 算法学习之路——贪心算法
蒋楠鑫
算法算法贪心算法
文章目录一、前言二、什么是算法三、什么是贪心算法1.含义2.基本思路3.适用场景四、代码实现五、经典例题分析六、总结一、前言先来看一道简单的数学问题:小明有30元钱,每瓶酒要5元钱,每3个空瓶子可以换1瓶酒,请问小明最多可以喝到多少瓶酒?这道题目显然是一道求最优解的问题,由于数据量小我们可以用最简单最直接的枚举法来解决,但是如果将题目泛化一下呢:小明现在购买了m瓶酒,每n个空瓶子可以换1瓶酒,请问
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 五大基础算法——模拟算法
六七_Shmily
数据结构与算法分析算法
模拟算法是一种通过直接模拟问题描述的过程或规则来解决问题的算法思想。它通常用于解决那些问题描述清晰、步骤明确、可以直接按照规则逐步实现的问题。以下是模拟算法的核心概念、适用场景、实现方法及经典例题:一、核心概念问题描述清晰问题的规则和步骤明确,可以直接按照描述实现。逐步模拟按照问题的规则,一步一步模拟过程,直到得到最终结果。无复杂优化模拟算法通常不涉及复杂的优化技巧,重点是准确实现问题描述。二、适
- C++闪电侠:快速幂算法终极指南
三流搬砖艺术家
算法算法深度优先c++
目录快速幂核心思想快速幂模板代码快速幂取模模板(大数必备)实战演练(LeetCode真题)快速幂核心思想二进制分解+分治思想:a^13=a^(8+4+1)=a^8*a^4*a^1通过不断平方分解指数:a→a²→a⁴→a⁸→...动态演示:指数b=13的二进制:1101计算路径:a^1→(a^1)²→a^2→(a^2)²→a^4→(a^4)²→a^8最终结果=a^8*a^4*a^1快速幂模板代码ll
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 云原生:K8s(Kubernetes)高频典型面试题汇总
老舅的火箭爱扫地
云原生kubernetes容器
1.简述etcd及其特点?答:etcd是CoreOS团队发起的开源项目,是一个管理配置信息和服务发现(servicediscovery)的项目,它的目标是构建一个高可用的分布式键值(key-value)数据库,基于Go语言实现。特点:l简单:支持REST风格的HTTP+JSONAPIl安全:支持HTTPS方式的访问l快速:支持并发1k/s的写操作l可靠:支持分布式结构,基于Raft的一致性算法,R
- 【第14届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.日期统计B.01串的熵C.冶炼金属D.飞机降落E.接龙数列F.岛屿个数G.子串简写H.整数删除I.景区导游J.砍树正文总共10道题。A.日期统计【题目】日期统计【分析】【答案】235【AC_Code】#include#defineIOSios::sync_with_stdio(0);cin.tie(0);cout.tie(0);usingn
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- 企业级通配符 SSL 证书:企业网络安全的坚实护盾
ssl证书
一、什么是企业级通配符SSL证书企业级通配符SSL证书,是一种数字证书,它就像是企业在网络世界的“身份证”。与普通证书不同,其最大亮点在于一个证书能保护一个主域名及其下所有的子域名。这极大地简化了证书管理流程,企业无需为每个子域名单独申请和配置证书,一站式搞定网络加密需求。二、强大的加密保障在网络数据传输如水流般穿梭的时代,信息安全至关重要。企业级通配符SSL证书采用先进加密算法,将数据加密打包后
- 深度合成算法备案十大雷区拆解
AI产品备案
人工智能算法语言模型ai
最近后台收到了很多小伙伴的私信,基本上都是在问算法备案被打回了;哪部分的材料有什么问题;不清楚驳回原因等等。今天结合大家最关心的问题,为大家详细剖析一下备案过程中常见的十大难题及解决方法。一、备案主体性质界定不明不少企业在备案过程中往往难以明确自身是否属于备案主体范围,尤其是涉及技术提供与应用服务的交叉领域,无法判断自身是否属于“具有舆论属性或者社会动员能力”主体。解决方案:仔细研读相关政策法规,
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 大模型和数据要素赋能实体零售行业数字化转型建设和实施方案
优享智库
大模型数据要素数据治理数据仓库主数据零售
大模型和数据要素赋能实体零售行业数字化转型建设和实施方案更多参考公众号:优享智库引言项目背景与意义数字化转型目标与期望实施方案概述零售行业现状及挑战实体零售行业现状数字化转型面临的挑战市场需求与趋势分析大模型与数据要素赋能策略大模型技术及应用场景数据要素采集、整合与治理赋能策略制定与实施路径数字化转型关键技术与解决方案人工智能技术及应用大数据分析与挖掘技术云计算、物联网等技术支持定制化解决方案设计
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&