python怎么写ai_使用Python写一个贪吃蛇AI

不久前在网上看到一张贪吃蛇的动态图片,蛇最后把所有的食物吃完并占满整个运动空间。

1.[代码]Python 贪吃蛇AI

# coding: utf-8

import curses

from curses import KEY_RIGHT, KEY_LEFT, KEY_UP, KEY_DOWN

from random import randint

# 蛇运动的场地长宽

HEIGHT = 10

WIDTH = 20

FIELD_SIZE = HEIGHT * WIDTH

# 蛇头总是位于snake数组的第一个元素

HEAD = 0

# 用来代表不同东西的数字,由于矩阵上每个格子会处理成到达食物的路径长度,

# 因此这三个变量间需要有足够大的间隔(>HEIGHT*WIDTH)

FOOD = 0

UNDEFINED = (HEIGHT + 1) * (WIDTH + 1)

SNAKE = 2 * UNDEFINED

# 由于snake是一维数组,所以对应元素直接加上以下值就表示向四个方向移动

LEFT = -1

RIGHT = 1

UP = -WIDTH

DOWN = WIDTH

# 错误码

ERR = -1111

# 用一维数组来表示二维的东西

# board表示蛇运动的矩形场地

# 初始化蛇头在(1,1)的地方,第0行,HEIGHT行,第0列,WIDTH列为围墙,不可用

# 初始蛇长度为1

board = [0] * FIELD_SIZE

snake = [0] * (FIELD_SIZE+1)

snake[HEAD] = 1*WIDTH+1

snake_size = 1

# 与上面变量对应的临时变量,蛇试探性地移动时使用

tmpboard = [0] * FIELD_SIZE

tmpsnake = [0] * (FIELD_SIZE+1)

tmpsnake[HEAD] = 1*WIDTH+1

tmpsnake_size = 1

# food:食物位置(0~FIELD_SIZE-1),初始在(3, 3)

# best_move: 运动方向

food = 3 * WIDTH + 3

best_move = ERR

# 运动方向数组

mov = [LEFT, RIGHT, UP, DOWN]

# 接收到的键 和 分数

key = KEY_RIGHT

score = 1 #分数也表示蛇长

# 检查一个cell有没有被蛇身覆盖,没有覆盖则为free,返回true

def is_cell_free(idx, psize, psnake):

return not (idx in psnake[:psize])

# 检查某个位置idx是否可向move方向运动

def is_move_possible(idx, move):

flag = False

if move == LEFT:

flag = True if idx%WIDTH > 1 else False

elif move == RIGHT:

flag = True if idx%WIDTH < (WIDTH-2) else False

elif move == UP:

flag = True if idx > (2*WIDTH-1) else False # 即idx/WIDTH > 1

elif move == DOWN:

flag = True if idx < (FIELD_SIZE-2*WIDTH) else False # 即idx/WIDTH < HEIGHT-2

return flag

# 重置board

# board_refresh后,UNDEFINED值都变为了到达食物的路径长度

# 如需要还原,则要重置它

def board_reset(psnake, psize, pboard):

for i in xrange(FIELD_SIZE):

if i == food:

pboard[i] = FOOD

elif is_cell_free(i, psize, psnake): # 该位置为空

pboard[i] = UNDEFINED

else: # 该位置为蛇身

pboard[i] = SNAKE

# 广度优先搜索遍历整个board,

# 计算出board中每个非SNAKE元素到达食物的路径长度

def board_refresh(pfood, psnake, pboard):

queue = []

queue.append(pfood)

inqueue = [0] * FIELD_SIZE

found = False

# while循环结束后,除了蛇的身体,

# 其它每个方格中的数字代码从它到食物的路径长度

while len(queue)!=0:

idx = queue.pop(0)

if inqueue[idx] == 1: continue

inqueue[idx] = 1

for i in xrange(4):

if is_move_possible(idx, mov[i]):

if idx + mov[i] == psnake[HEAD]:

found = True

if pboard[idx+mov[i]] < SNAKE: # 如果该点不是蛇的身体

if pboard[idx+mov[i]] > pboard[idx]+1:

pboard[idx+mov[i]] = pboard[idx] + 1

if inqueue[idx+mov[i]] == 0:

queue.append(idx+mov[i])

return found

# 从蛇头开始,根据board中元素值,

# 从蛇头周围4个领域点中选择最短路径

def choose_shortest_safe_move(psnake, pboard):

best_move = ERR

min = SNAKE

for i in xrange(4):

if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]

min = pboard[psnake[HEAD]+mov[i]]

best_move = mov[i]

return best_move

# 从蛇头开始,根据board中元素值,

# 从蛇头周围4个领域点中选择最远路径

def choose_longest_safe_move(psnake, pboard):

best_move = ERR

max = -1

for i in xrange(4):

if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]max:

max = pboard[psnake[HEAD]+mov[i]]

best_move = mov[i]

return best_move

# 检查是否可以追着蛇尾运动,即蛇头和蛇尾间是有路径的

# 为的是避免蛇头陷入死路

# 虚拟操作,在tmpboard,tmpsnake中进行

def is_tail_inside():

global tmpboard, tmpsnake, food, tmpsnake_size

tmpboard[tmpsnake[tmpsnake_size-1]] = 0 # 虚拟地将蛇尾变为食物(因为是虚拟的,所以在tmpsnake,tmpboard中进行)

tmpboard[food] = SNAKE # 放置食物的地方,看成蛇身

result = board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得每个位置到蛇尾的路径长度

for i in xrange(4): # 如果蛇头和蛇尾紧挨着,则返回False。即不能follow_tail,追着蛇尾运动了

if is_move_possible(tmpsnake[HEAD], mov[i]) and tmpsnake[HEAD]+mov[i]==tmpsnake[tmpsnake_size-1] and tmpsnake_size>3:

result = False

return result

# 让蛇头朝着蛇尾运行一步

# 不管蛇身阻挡,朝蛇尾方向运行

def follow_tail():

global tmpboard, tmpsnake, food, tmpsnake_size

tmpsnake_size = snake_size

tmpsnake = snake[:]

board_reset(tmpsnake, tmpsnake_size, tmpboard) # 重置虚拟board

tmpboard[tmpsnake[tmpsnake_size-1]] = FOOD # 让蛇尾成为食物

tmpboard[food] = SNAKE # 让食物的地方变成蛇身

board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得各个位置到达蛇尾的路径长度

tmpboard[tmpsnake[tmpsnake_size-1]] = SNAKE # 还原蛇尾

return choose_longest_safe_move(tmpsnake, tmpboard) # 返回运行方向(让蛇头运动1步)

# 在各种方案都不行时,随便找一个可行的方向来走(1步),

def any_possible_move():

global food , snake, snake_size, board

best_move = ERR

board_reset(snake, snake_size, board)

board_refresh(food, snake, board)

min = SNAKE

for i in xrange(4):

if is_move_possible(snake[HEAD], mov[i]) and board[snake[HEAD]+mov[i]]

min = board[snake[HEAD]+mov[i]]

best_move = mov[i]

return best_move

def shift_array(arr, size):

for i in xrange(size, 0, -1):

arr[i] = arr[i-1]

def new_food():

global food, snake_size

cell_free = False

while not cell_free:

w = randint(1, WIDTH-2)

h = randint(1, HEIGHT-2)

food = h * WIDTH + w

cell_free = is_cell_free(food, snake_size, snake)

win.addch(food/WIDTH, food%WIDTH, '@')

# 真正的蛇在这个函数中,朝pbest_move走1步

def make_move(pbest_move):

global key, snake, board, snake_size, score

shift_array(snake, snake_size)

snake[HEAD] += pbest_move

# 按esc退出,getch同时保证绘图的流畅性,没有它只会看到最终结果

win.timeout(10)

event = win.getch()

key = key if event == -1 else event

if key == 27: return

p = snake[HEAD]

win.addch(p/WIDTH, p%WIDTH, '*')

# 如果新加入的蛇头就是食物的位置

# 蛇长加1,产生新的食物,重置board(因为原来那些路径长度已经用不上了)

if snake[HEAD] == food:

board[snake[HEAD]] = SNAKE # 新的蛇头

snake_size += 1

score += 1

if snake_size < FIELD_SIZE: new_food()

else: # 如果新加入的蛇头不是食物的位置

board[snake[HEAD]] = SNAKE # 新的蛇头

board[snake[snake_size]] = UNDEFINED # 蛇尾变为空格

win.addch(snake[snake_size]/WIDTH, snake[snake_size]%WIDTH, ' ')

# 虚拟地运行一次,然后在调用处检查这次运行可否可行

# 可行才真实运行。

# 虚拟运行吃到食物后,得到虚拟下蛇在board的位置

def virtual_shortest_move():

global snake, board, snake_size, tmpsnake, tmpboard, tmpsnake_size, food

tmpsnake_size = snake_size

tmpsnake = snake[:] # 如果直接tmpsnake=snake,则两者指向同一处内存

tmpboard = board[:] # board中已经是各位置到达食物的路径长度了,不用再计算

board_reset(tmpsnake, tmpsnake_size, tmpboard)

food_eated = False

while not food_eated:

board_refresh(food, tmpsnake, tmpboard)

move = choose_shortest_safe_move(tmpsnake, tmpboard)

shift_array(tmpsnake, tmpsnake_size)

tmpsnake[HEAD] += move # 在蛇头前加入一个新的位置

# 如果新加入的蛇头的位置正好是食物的位置

# 则长度加1,重置board,食物那个位置变为蛇的一部分(SNAKE)

if tmpsnake[HEAD] == food:

tmpsnake_size += 1

board_reset(tmpsnake, tmpsnake_size, tmpboard) # 虚拟运行后,蛇在board的位置(label101010)

tmpboard[food] = SNAKE

food_eated = True

else: # 如果蛇头不是食物的位置,则新加入的位置为蛇头,最后一个变为空格

tmpboard[tmpsnake[HEAD]] = SNAKE

tmpboard[tmpsnake[tmpsnake_size]] = UNDEFINED

# 如果蛇与食物间有路径,则调用本函数

def find_safe_way():

global snake, board

safe_move = ERR

# 虚拟地运行一次,因为已经确保蛇与食物间有路径,所以执行有效

# 运行后得到虚拟下蛇在board中的位置,即tmpboard,见label101010

virtual_shortest_move() # 该函数唯一调用处

if is_tail_inside(): # 如果虚拟运行后,蛇头蛇尾间有通路,则选最短路运行(1步)

return choose_shortest_safe_move(snake, board)

safe_move = follow_tail() # 否则虚拟地follow_tail 1步,如果可以做到,返回true

return safe_move

curses.initscr()

win = curses.newwin(HEIGHT, WIDTH, 0, 0)

win.keypad(1)

curses.noecho()

curses.curs_set(0)

win.border(0)

win.nodelay(1)

win.addch(food/WIDTH, food%WIDTH, '@')

while key != 27:

win.border(0)

win.addstr(0, 2, 'S:' + str(score) + ' ')

win.timeout(10)

# 接收键盘输入,同时也使显示流畅

event = win.getch()

key = key if event == -1 else event

# 重置矩阵

board_reset(snake, snake_size, board)

# 如果蛇可以吃到食物,board_refresh返回true

# 并且board中除了蛇身(=SNAKE),其它的元素值表示从该点运动到食物的最短路径长

if board_refresh(food, snake, board):

best_move = find_safe_way() # find_safe_way的唯一调用处

else:

best_move = follow_tail()

if best_move == ERR:

best_move = any_possible_move()

# 上面一次思考,只得出一个方向,运行一步

if best_move != ERR: make_move(best_move)

else: break

curses.endwin()

print("\nScore - " + str(score))

你可能感兴趣的:(python怎么写ai)