python直方图规定化_直方图规定化+暗通道去雾 python

import torch

def torch_equalize(image):

"""Implements Equalize function from PIL using PyTorch ops based on:https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py#L352"""

def scale_channel(im, c):

"""Scale the data in the channel to implement equalize."""

im = im[:, :, c]

# Compute the histogram of the image channel.

histo = torch.histc(im, bins=256, min=0, max=255)#.type(torch.int32)

# For the purposes of computing the step, filter out the nonzeros.

nonzero_histo = torch.reshape(histo[histo != 0], [-1])

step = (torch.sum(nonzero_histo) - nonzero_histo[-1]) // 255

def build_lut(histo, step):

# Compute the cumulative sum, shifting by step // 2

# and then normalization by step.

lut = (torch.cumsum(histo, 0) + (step // 2)) // step

# Shift lut, prepending with 0.

lut = torch.cat([torch.zeros(1), lut[:-1]])

# Clip the counts to be in range. This is done

# in the C code for image.point.

return torch.clamp(lut, 0, 255)

# If step is zero, return the original image. Otherwise, build

# lut from the full histogram and step and then index from it.

if step == 0:

result = im

else:

# can't index using 2d index. Have to flatten and then reshape

result = torch.gather(build_lut(histo, step), 0, im.flatten().long())

result = result.reshape_as(im)

return result.type(torch.uint8)

# Assumes RGB for now. Scales each channel independently

# and then stacks the result.

image = image.type(torch.float)

s1 = scale_channel(image, 0)

s2 = scale_channel(image, 1)

s3 = scale_channel(image, 2)

image = torch.stack([s1, s2, s3], 2)

return image

def find_nearest_above(my_array, target):

diff = my_array - target

mask = diff <= -1

# We need to mask the negative differences

# since we are looking for values above

if torch.all(mask):

c = torch.abs(diff).argmin()

return c # returns min index of the nearest if target is greater than any value

masked_diff = diff.clone()

masked_diff[mask] = 9999

return masked_diff.argmin()

def hist_match(source, template):

s = source.view(-1)

t = template.view(-1)

s_values, bin_idx, s_counts = torch.unique(s, return_inverse=True, return_counts=True)

t_values, t_counts = torch.unique(t, return_counts=True)

s_quantities = torch.cumsum(s_counts,0).type(torch.float)

t_quantities = torch.cumsum(t_counts,0).type(torch.float)

s_quantities = s_quantities/s_quantities[s_quantities.shape[0]-1]

t_quantities = t_quantities/t_quantities[t_quantities.shape[0]-1]

sour = (s_quantities * 255).type(torch.long)

temp = (t_quantities * 255).type(torch.long)

b = torch.zeros(sour.shape)

for i in range(sour.shape[0]):

b[i] = find_nearest_above(temp, sour[i])

s=b[bin_idx]

return s.view(source.shape)

def hist_match_dark_prior(img):

# input: img[h, w, c]

# output:res[h, w, c]

result = img.clone()

result = torch_equalize(result)

dark_prior,_ = torch.min(result, axis=2)

for i in range(3):

result[:,:,i] = hist_match(result[:,:,i], dark_prior)

return result

if __name__=='__main__':

from PIL import Image

import numpy as np

im=Image.open("Night-schene-03.jpg")

img=torch.from_numpy(np.array(im))

img1=hist_match_dark_prior(img).numpy()

im1=Image.fromarray(img1)

im1.save('out.png')

你可能感兴趣的:(python直方图规定化)