- 2024年Agent AI:Agent AI的基本概念、关键技术、应用前景、未来展望
大模型部署
人工智能langchain程序员知识图谱LLMAI大模型编程
在2024年,人工智能领域迎来了一个新的里程碑——AgentAI的兴起。AgentAI,即代理智能,是一种能够感知并在不同领域和应用中采取行动的系统。它不仅是人工智能研究的一个新方向,更是通向人工通用智能(AGI)的一条充满希望的途径。本文将详细介绍AgentAI的基本概念、关键技术和应用前景。一、AgentAI的基本概念AgentAI,或称代理智能,是指一类能够感知环境、理解情境并在此基础上执行
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- Python 学习之旅:高级阶段(十七)Web 开发之模板引擎(如 Jinja2)
喜-喜
Python学习python学习前端
在Python的Web开发进程中,模板引擎是一个关键的工具,它能帮助我们将动态数据和静态的HTML结构结合起来,生成最终呈现给用户的网页。Jinja2作为Python中广泛使用的模板引擎,以其简洁的语法和强大的功能,在众多Web框架中发挥着重要作用。接下来,让我们以Flask框架为依托,深入了解Jinja2模板引擎。一、模板引擎的作用 在Web开发中,我们常常需要根据不同的用户请求,动态生成
- c语言代码编译报错:‘for’ loop initial declarations are only allowed in C99 or C11 mode 的解决办法
喜-喜
经验分享c语言开发语言
当你遇到‘for’loopinitialdeclarationsareonlyallowedinC99orC11mode这个错误,是因为在默认情况下,一些编译器(如GCC)使用的是C89/C90标准,而在C89/C90标准里,不允许在for循环的初始化部分声明变量,只有在C99及以后的标准才支持这种语法。错误代码示例在源代码中,可能存在类似下面这种在for循环初始化部分声明变量的代码:for(in
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- Springboot集合RabbitMQ运行过程中报错:Channel shutdown: channel error; protocol method解决方法
珠峰日记
RabbitMQrabbitmqjava
一、问题现象:消息消费后日志中存在以下ERROR二、产生问题背景:在消息的消费处理逻辑中有手动确认消息的操作:三、问题分析:1、默认情况下spring-boot-data-amqp是自动ACK机制,就意味着MQ会在消息发送完毕后,自动帮我们去ACK,然后删除消息的信息。2、消息确认的类型:channel.basicAck(deliveryTag,multiple);consumer处理成功后,通知
- 系统架构设计基础知识
胶水代码
系统架构设计师系统架构
一.系统架构概述系统架构的定义系统架构(SystemArchitecture)是系统的一种整体的高层次的结构表示,是系统的骨架和根基,支撑和链接各个部分,包括构件、连接件、约束规范以及指导这些内容设计与演化的原理,是刻画系统整体抽象结构的一种手段。软架构的定义软件体系结构为软件系统提供了结构、行为和属性的高级抽象,由构成系统的元素描述、元素的外部可见属性、这些元素的相互作用、指导元素集成的模式以及
- 突破性能极限:DeepSeek开源FlashMLA解码内核技术解析
Shockang
DeepSeekDeepSeek技术前沿
引言:大模型时代的推理加速革命在生成式AI大行其道的今天,如何提升大语言模型的推理效率已成为行业焦点。DeepSeek团队最新开源的FlashMLA项目凭借其惊人的性能表现引发关注——在H800GPU上实现580TFLOPS计算性能,这正是大模型推理优化的重大突破。项目亮点速览GitHub仓库|性能测试核心优势硬件级优化:专为Hopper架构GPU设计,充分发挥TensorCore潜力内存黑科技:
- Python自动化办公实战:PDF文本提取技巧
乔代码嘚
Pythonpython脚本python自动化pdf
哈喽大家好,今天来给大家介绍Python-PDF文本提取技巧PDF文件具有跨平台的特点,可以在不同的操作系统和设备上保持一致的显示效果。但是,PDF文件也有一些缺点,比如不易编辑、复制和搜索。如果我们想要从PDF文件中提取文本内容,该怎么办呢?在本教程中,我们将介绍如何使用Python中的PyPDF2库来提取PDF文件中的内嵌文字内容。PyPDF2是一个纯Python的库,可以读取、分割、合并、裁
- 0092:小明养猪的故事(C++)
王.Victoria
c++编程语言
小明养猪的故事描述话说现在猪肉价格这么贵,小明也开始了养猪生活。说来也奇怪,他养的猪一出生第二天开始就能每天中午生一只小猪,而且生下来的竟然都是母猪。不过光生小猪也不行,小明采用了一个很奇特的办法来管理他的养猪场:对于每头刚出生的小猪,在它生下第二头小猪后立马被杀掉,卖到超市里。假设在创业的第一天,小明只买了一头刚出生的小猪,请问,在第N天晚上,小明的养猪场里还存有多少头猪?输入测试数据的第一行是
- 机器学习数学通关指南——牛顿-莱布尼茨公式
Shockang
机器学习数学通关指南机器学习数学微积分
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文一句话总结∫abf(x) dx=F(b)−F(a)\int_{a}^{b}f(x)\,dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)其中,F(x)F(x)F(x)是f(x)f(x)f(x)的一个原函数(即F′(
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 洛谷P1030(求先序遍历)题解
1≈∞
算法题解
题目大意:输入树的中序和后序遍历(节点为大写字母),输出先序遍历二叉树的各种遍历方式的特点。先序遍历是根左右,中序是左根右,后序是左右根。所以,已知中序和后序的话,怎么找出根节点呢?比如,后序排列的最后一个字符就是整个二叉树的根节点。然后在中序排列中找到这个根节点,就可以把中序分成左子树和右子树两部分。例如,假设中序是BADC,后序是BDCA,那后序的最后一个字符是A,所以根是A。在中序里,A的位
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- [python]windows上安装pyaudio最简单方法
萌萌哒240
pythonpythonwindows开发语言
PyAudio是一个用于处理音频流的Python库,它依赖于PortAudio库。如果直接使用pip命令无法安装PyAudio,可以尝试通过whl文件进行安装。以下是PyAudio通过whl文件安装的详细方法:一、准备阶段下载PyAudio的whl文件访问可靠的Python包分发网站,如镜像站点https://gitee.com/FIRC/pythonlibs_whl_mirror,或者使用其他可
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- 共识算法 —— DPoS
yezhijing
区块链共识算法区块链算法
定义2014年4月由Bitshares的首席开发者DanLarimer提出。DPoS的全称是DelegatedProofofStake代理权益证明,它是由持有币的人选出一定数量(一般是101个,不一定,由项目方决定,不能少于11个)的代表节点(受托人)来运营网络(类似于人民群众选举出来的人大代表,由人大代表来维护人民的权益)。受托节点有记账的权力(也就是有生成区块、验证交易、区块上链的权限),但是
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- Activity 任务栈 taskAffinity 用法
SunshineBoy的博客
面试专栏android
taskAffinity属性taskAffinity是Activity的一个重要属性,主要用于任务栈管理,通常和singleTask和allowTaskReparenting配合使用;taskAffinity主要作用:1.任务栈分配:-默认情况下,同一应用的Activity共享同一个任务栈-通过taskAffinity可以为Activity指定不同的任务栈-任务栈名称默认为应用的包名2.常见使用场
- 蓝牙耳机的2种模式(Stereo,Hand-free)是什么?
geek_Chen01
计算机外设硬件架构电脑
stereo=立体声(音质好,只能听歌)handsfree=免提(音质差,可用麦克风)立体声("Stereo")设备在蓝牙术语中被称为“高级音频分发配置文件”("AdvancedAudioDistributionProfile"),或缩写为A2DP,是针对单方向传输高质量的双声道立体声设计的。可以简单理解为,音质更高(相对于"Hands-free"模式)。免提("Hands-free")设备分别对
- The Rust Programming Language - 第15章 智能指针 - 15.1 使用Box<T>指向堆上的数据
shiyivei
#Rustrust开发语言泛型智能指针存储空间
15智能指针指针指向变量的内存地址,除了引用数据没有其它的功能,因此没有运行开销智能指针是一类数据结构,虽然表现类似指针,但是拥有额外的元数据和功能。Rust的智能指针提供了包含引用之外的其他功能,但是指针这个概念并不是Rust独有的在Rust中,普通指针只是借用数据,而智能指针还拥有它们指向的数据,比如String和Vec,它们都是智者指针,它们拥有数据并且可以被修改。它们也带有元数据(比如容量
- 【限时免费】20天拿下华为OD笔试之【不定滑窗】2023Q1A-区块链文件转储系统-200分【闭着眼睛学数理化】全网注释最详细分类最全的华为OD真题题解
闭着眼睛学算法
最新华为OD真题#滑动窗口华为odpython算法面试华为
【不定滑窗】2023Q1A-区块链文件转储系统题目描述与示例题目描述区块链底层存储是一个链式文件系统,由顺序的N个文件组成,每个文件的大小不一,依次为F1,F2,…,Fn。随着时间的推移,所占存储会越来越大。云平台考虑将区块链按文件转储到廉价的SATA盘,只有连续的区块链文件才能转储到SATA盘上,且转储的文件之和不能超过SATA盘的容量。假设每块SATA盘容量为M,求能转储的最大连续文件大小之和
- java23种设计模式-单例模式
千里码!
后端技术设计模式#Java单例模式设计模式
单例模式(SingletonPattern)学习笔记定义单例模式属于创建型设计模式,确保一个类只有一个实例,并提供全局访问点。是Java中最简单但实现最复杂的设计模式。适用场景需要控制资源访问(如数据库连接池)全局配置对象日志记录器设备管理器(如打印机服务)缓存系统线程池/连接池管理模式结构类图Singleton-staticinstance:Singleton-Singleton()+stati
- 1/30每日一题
转码的小石
服务器运维
从输入URL到页面展示到底发生了什么?1.输入URL与浏览器解析当你在浏览器地址栏输入URL并按下回车,浏览器首先会解析这个URL(统一资源定位符),比如https://www.example.com。浏览器会解析这个URL中的不同部分:协议(如:http或https):决定了数据传输的方式和安全性。域名(如:www.example.com):确定请求的目标服务器。路径(如:/index.html
- 1/31每日
转码的小石
java开发语言
1.Exception和Error的区别Exception和Error都是Throwable类的子类,但它们有不同的用途和含义。Exception:代表程序运行时可以处理的异常情况。Exception是可预料的,通常是程序逻辑错误或者其他外部因素导致的,程序可以通过捕获这些异常来做出适当的处理。例如:FileNotFoundException、IOException等。Error:代表程序无法控制
- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比